Comparison of hydrogen production and system performance in a microbial electrolysis cell containing cathodes made of non-platinum catalysts and binders

Sunghoon Son, Bonyoung Koo, Hyungwon Chai, Huong Viet Hoa Tran, Soumya Pandit, Sokhee P. Jung

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

Microbial electrolysis cell (MEC) is an innovative electrochemical technology that decomposes organic matter in anode and produces hydrogen in cathode. It is imperative to use a high-performance and a low-cost cathode material to make the application of MEC economically viable. In this study, five different cathodes made of low-cost materials were tested in MECs. The materials included activated carbon (AC) and nickel powder (Ni) as a cathode catalyst; polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) as a catalyst binder; stainless steel mesh (SSM) as a cathode substrate or a cathode itself. Among the tested cathodes, Ni/AC/PTFE obtained the best performance, followed by Ni/AC/PVDF, AC/PVDF, flamed-oxidized SSM (SSM/F) and SSM. Ni/AC/PTFE exhibited the best performance in hydrogen production rate (HPR, 1.88 L/L d), hydrogen purity (97.5%), coulombic efficiency (124%), energy efficiency (216%), cathodic capacitance (0.9924 F), along with the lowest cathodic impedance (35 Ω). The worst performed SSM showed as follows: 0.57 L/L d of HPR, 71% of hydrogen purity, 36% of coulombic efficiency, 62% of energy efficiency, 0.0008 F of cathodic capacitance and 62 Ω of cathodic impedance. This study shows quantitatively the electrochemical and performance transitions of MEC according to the cathode component changes.

Original languageEnglish
Article number101844
JournalJournal of Water Process Engineering
Volume40
DOIs
StatePublished - 1 Apr 2021
Externally publishedYes

Keywords

  • Catalyst binder
  • Hydrogen evolution reaction
  • Hydrogen production
  • Microbial electrolysis cell
  • Nickel

ASJC Scopus subject areas

  • Biotechnology
  • Safety, Risk, Reliability and Quality
  • Waste Management and Disposal
  • Process Chemistry and Technology

Fingerprint

Dive into the research topics of 'Comparison of hydrogen production and system performance in a microbial electrolysis cell containing cathodes made of non-platinum catalysts and binders'. Together they form a unique fingerprint.

Cite this