Complete Kneser transversals

J. Chappelon, L. Martínez-Sandoval, L. Montejano, L. P. Montejano, J. L. Ramírez Alfonsín

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Let k,d,λ⩾1 be integers with d⩾λ. Let m(k,d,λ) be the maximum positive integer n such that every set of n points (not necessarily in general position) in Rd has the property that the convex hulls of all k-sets have a common transversal (d−λ)-plane. It turns out that m(k,d,λ) is strongly connected with other interesting problems, for instance, the chromatic number of Kneser hypergraphs and a discrete version of Rado's centerpoint theorem. In the same spirit, we introduce a natural discrete version m of m by considering the existence of complete Kneser transversals. We study the relation between them and give a number of lower and upper bounds of m as well as the exact value in some cases. The main ingredient for the proofs are Radon's partition theorem as well as oriented matroids tools. By studying the alternating oriented matroid we obtain the asymptotic behavior of the function m for the family of cyclic polytopes.

Original languageEnglish
Pages (from-to)83-101
Number of pages19
JournalAdvances in Applied Mathematics
Volume82
DOIs
StatePublished - 1 Jan 2017
Externally publishedYes

Keywords

  • Cyclic polytope
  • Kneser hypergraphs
  • Oriented matroids
  • Transversals

ASJC Scopus subject areas

  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Complete Kneser transversals'. Together they form a unique fingerprint.

Cite this