Complete problems for multi-pseudodeterministic computations

Peter Dixon, A. Pavan, N. V. Vinodchandran

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

We exhibit several computational problems that are complete for multi-pseudodeterministic computations in the following sense: (1) these problems admit 2-pseudodeterministic algorithms (2) if there exists a pseudodeterministic algorithm for any of these problems, then any multi-valued function that admits a k-pseudodeterministic algorithm for a constant k, also admits a pseudodeterministic algorithm. We also show that these computational problems are complete for Search-BPP: a pseudodeterministic algorithm for any of these problems implies a pseudodeterministic algorithm for all problems in Search-BPP.

Original languageEnglish
Title of host publication12th Innovations in Theoretical Computer Science Conference, ITCS 2021
EditorsJames R. Lee
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771771
DOIs
StatePublished - 1 Feb 2021
Externally publishedYes
Event12th Innovations in Theoretical Computer Science Conference, ITCS 2021 - Virtual, Online
Duration: 6 Jan 20218 Jan 2021

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume185
ISSN (Print)1868-8969

Conference

Conference12th Innovations in Theoretical Computer Science Conference, ITCS 2021
CityVirtual, Online
Period6/01/218/01/21

Keywords

  • Circuit acceptance
  • Collision probability
  • Completeness
  • Entropy approximation
  • Pseudodeterminism

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Complete problems for multi-pseudodeterministic computations'. Together they form a unique fingerprint.

Cite this