Conformal spectral stability estimates for the Neumann Laplacian

V. I. Burenkov, V. Gol'dshtein, A. Ukhlov

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We study the eigenvalue problem for the Neumann–Laplace operator in conformal regular planar domains Ω ⊂ C. Conformal regular domains support the Poincaré–Sobolev inequality and this allows us to estimate the variation of the eigenvalues of the Neumann Laplacian upon domain perturbation via energy type integrals. Boundaries of such domains can have any Hausdorff dimension between one and two.

Original languageEnglish
Pages (from-to)2133-2146
Number of pages14
JournalMathematische Nachrichten
Volume289
Issue number17-18
DOIs
StatePublished - 1 Dec 2016

Keywords

  • conformal mappings
  • eigenvalue problem
  • elliptic equations
  • quasidiscs

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Conformal spectral stability estimates for the Neumann Laplacian'. Together they form a unique fingerprint.

Cite this