Conformant planning via heuristic forward search: A new approach

Jörg Hoffmann, Ronen I. Brafman

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

Conformant planning is the task of generating plans given uncertainty about the initial state and action effects, and without any sensing capabilities during plan execution. The plan should be successful regardless of which particular initial world we start from. It is well known that conformant planning can be transformed into a search problem in belief space, the space whose elements are sets of possible worlds. We introduce a new representation of that search space, replacing the need to store sets of possible worlds with a need to reason about the effects of action sequences. The reasoning is done by implication tests on propositional formulas in conjunctive normal form (CNF) that capture the action sequence semantics. Based on this approach, we extend the classical heuristic forward-search planning system FF to the conformant setting. The key to this extension is an appropriate extension of the relaxation that underlies FF's heuristic function, and of FF's machinery for solving relaxed planning problems: the extended machinery includes a stronger form of the CNF implication tests that we use to reason about the effects of action sequences. Our experimental evaluation shows the resulting planning system to be superior to the state-of-the-art conformant planners MBP, KACMBP, and GPT in a variety of benchmark domains.

Original languageEnglish
Pages (from-to)507-541
Number of pages35
JournalArtificial Intelligence
Volume170
Issue number6-7
DOIs
StatePublished - 1 May 2006

Keywords

  • Heuristic search planning
  • Planning under uncertainty
  • Relaxed plan heuristic

Fingerprint

Dive into the research topics of 'Conformant planning via heuristic forward search: A new approach'. Together they form a unique fingerprint.

Cite this