## Abstract

We study a combinatorial geometric problem related to the design of wireless networks with directional antennas. Specifically, we are interested in necessary and sufficient conditions on such antennas that enable one to build a connected communication network, and in efficient algorithms for building such networks when possible. We formulate the problem by a set P of n points in the plane, indicating the positions of n transceivers. Each point is equipped with an α-degree directional antenna, and one needs to adjust the antennas (represented as wedges), by specifying their directions, so that the resulting (undirected) communication graph G is connected. (Two points p,qεP are connected by an edge in G, if and only if q lies in p's wedge and p lies in q's wedge.) We prove that if α=60°, then it is always possible to adjust the wedges so that G is connected, and that α≥60° is sometimes necessary to achieve this. Our proof is constructive and yields an O(nlogk) time algorithm for adjusting the wedges, where k is the size of the convex hull of P. Sometimes it is desirable that the communication graph G contain a Hamiltonian path. By a result of Fekete and Woeginger (1997) [8], if α=90°, then it is always possible to adjust the wedges so that G contains a Hamiltonian path. We give an alternative proof to this, which is interesting, since it produces paths of a different nature than those produced by the construction of Fekete and Woeginger. We also show that for any n and ε>0, there exist sets of points such that G cannot contain a Hamiltonian path if α=90°-ε.

Original language | English |
---|---|

Pages (from-to) | 477-485 |

Number of pages | 9 |

Journal | Computational Geometry: Theory and Applications |

Volume | 44 |

Issue number | 9 |

DOIs | |

State | Published - 1 Nov 2011 |

## Keywords

- Connectivity
- Directional antennas
- Polygonal paths
- Wireless networks

## ASJC Scopus subject areas

- Computer Science Applications
- Geometry and Topology
- Control and Optimization
- Computational Theory and Mathematics
- Computational Mathematics