TY - JOUR
T1 - Conservation machine learning
T2 - a case study of random forests
AU - Sipper, Moshe
AU - Moore, Jason H.
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Conservation machine learning conserves models across runs, users, and experiments—and puts them to good use. We have previously shown the merit of this idea through a small-scale preliminary experiment, involving a single dataset source, 10 datasets, and a single so-called cultivation method—used to produce the final ensemble. In this paper, focusing on classification tasks, we perform extensive experimentation with conservation random forests, involving 5 cultivation methods (including a novel one introduced herein—lexigarden), 6 dataset sources, and 31 datasets. We show that significant improvement can be attained by making use of models we are already in possession of anyway, and envisage the possibility of repositories of models (not merely datasets, solutions, or code), which could be made available to everyone, thus having conservation live up to its name, furthering the cause of data and computational science.
AB - Conservation machine learning conserves models across runs, users, and experiments—and puts them to good use. We have previously shown the merit of this idea through a small-scale preliminary experiment, involving a single dataset source, 10 datasets, and a single so-called cultivation method—used to produce the final ensemble. In this paper, focusing on classification tasks, we perform extensive experimentation with conservation random forests, involving 5 cultivation methods (including a novel one introduced herein—lexigarden), 6 dataset sources, and 31 datasets. We show that significant improvement can be attained by making use of models we are already in possession of anyway, and envisage the possibility of repositories of models (not merely datasets, solutions, or code), which could be made available to everyone, thus having conservation live up to its name, furthering the cause of data and computational science.
UR - http://www.scopus.com/inward/record.url?scp=85101064843&partnerID=8YFLogxK
U2 - 10.1038/s41598-021-83247-4
DO - 10.1038/s41598-021-83247-4
M3 - Article
C2 - 33574563
AN - SCOPUS:85101064843
SN - 2045-2322
VL - 11
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 3629
ER -