TY - GEN
T1 - Constant-Factor approximation for ordered k-Median
AU - Byrka, Jarosław
AU - Sornat, Krzysztof
AU - Spoerhase, Joachim
N1 - Publisher Copyright:
© 2018 Association for Computing Machinery.
PY - 2018/6/20
Y1 - 2018/6/20
N2 - We study the Ordered k-Median problem, in which the solution is evaluated by first sorting the client connection costs and then multiplying them with a predefined non-increasing weight vector (higher connection costs are taken with larger weights). Since the 1990s, this problem has been studied extensively in the discrete optimization and operations research communities and has emerged as a framework unifying many fundamental clustering and location problems such as k-Median and k-Center. Obtaining non-trivial approximation algorithms was an open problem even for simple topologies such as trees. Recently, Aouad and Segev (2017) were able to obtain an O (log n) approximation algorithm for Ordered kMedian using a sophisticated local-search approach. The existence of a constant-factor approximation algorithm, however, remained open even for the rectangular weight vector. In this paper, we provide an LP-rounding constant-factor approximation algorithm for the Ordered k-Median problem. We achieve this result by revealing an interesting connection to the classic k-Median problem. In particular, we propose a novel LP relaxation that uses the constraints of the natural LP relaxation for kMedian but minimizes over a non-metric, distorted cost vector. This cost function (approximately) emulates the weighting of distances in an optimum solution and can be guessed by means of a clever enumeration scheme of Aouad and Segev. Although the resulting LP has an unbounded integrality gap, we can show that the LP rounding process by Charikar and Li (2012) for k-Median, operating on the original, metric space, gives a constant-factor approximation when relating not only to the LP value but also to a combinatorial bound derived from the guessing phase. To analyze the rounding process under the non-linear, ranking-based objective of Ordered k-Median, we employ several new ideas and technical ingredients that we believe could be of interest in some of the numerous other settings related to ordered, weighted cost functions.
AB - We study the Ordered k-Median problem, in which the solution is evaluated by first sorting the client connection costs and then multiplying them with a predefined non-increasing weight vector (higher connection costs are taken with larger weights). Since the 1990s, this problem has been studied extensively in the discrete optimization and operations research communities and has emerged as a framework unifying many fundamental clustering and location problems such as k-Median and k-Center. Obtaining non-trivial approximation algorithms was an open problem even for simple topologies such as trees. Recently, Aouad and Segev (2017) were able to obtain an O (log n) approximation algorithm for Ordered kMedian using a sophisticated local-search approach. The existence of a constant-factor approximation algorithm, however, remained open even for the rectangular weight vector. In this paper, we provide an LP-rounding constant-factor approximation algorithm for the Ordered k-Median problem. We achieve this result by revealing an interesting connection to the classic k-Median problem. In particular, we propose a novel LP relaxation that uses the constraints of the natural LP relaxation for kMedian but minimizes over a non-metric, distorted cost vector. This cost function (approximately) emulates the weighting of distances in an optimum solution and can be guessed by means of a clever enumeration scheme of Aouad and Segev. Although the resulting LP has an unbounded integrality gap, we can show that the LP rounding process by Charikar and Li (2012) for k-Median, operating on the original, metric space, gives a constant-factor approximation when relating not only to the LP value but also to a combinatorial bound derived from the guessing phase. To analyze the rounding process under the non-linear, ranking-based objective of Ordered k-Median, we employ several new ideas and technical ingredients that we believe could be of interest in some of the numerous other settings related to ordered, weighted cost functions.
KW - Approximation algorithms
KW - Clustering
KW - K-center
KW - K-median
UR - http://www.scopus.com/inward/record.url?scp=85049880267&partnerID=8YFLogxK
U2 - 10.1145/3188745.3188930
DO - 10.1145/3188745.3188930
M3 - Conference contribution
AN - SCOPUS:85049880267
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 964
EP - 977
BT - STOC 2018 - Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
A2 - Henzinger, Monika
A2 - Kempe, David
A2 - Diakonikolas, Ilias
PB - Association for Computing Machinery
T2 - 50th Annual ACM Symposium on Theory of Computing, STOC 2018
Y2 - 25 June 2018 through 29 June 2018
ER -