Abstract
In this article, we suggest a novel deep learning recommendation framework that incorporates contextual information into neural collaborative filtering recommendation approaches. Since context is often represented by dynamic and high-dimensional feature space in multiple applications and services, we suggest to model contextual information in various ways for multiple purposes, such as rating prediction, generating top-k recommendations, and classification of users' feedback. Specifically, based on the suggested framework, we propose three deep context-aware recommendation models based on explicit, unstructured, and structured latent representations of contextual data derived from various contextual dimensions (e.g., time, location, user activity). Offline evaluation on three context-aware datasets confirms that our proposed deep context-aware models surpass state-of-the-art context-aware methods. We also show that utilizing structured latent contexts in the proposed deep recommendation framework achieves significantly better performance than the other context-aware models on all datasets.
Original language | English |
---|---|
Article number | 3386243 |
Journal | ACM Transactions on Management Information Systems |
Volume | 11 |
Issue number | 2 |
DOIs | |
State | Published - 1 Jul 2020 |
Keywords
- Context
- context-aware recommendation
- deep learning
- latent
- neural networks
ASJC Scopus subject areas
- Management Information Systems
- General Computer Science