TY - JOUR
T1 - Continuous CO2 escape from the hypersaline Dead Sea caused by aragonite precipitation
AU - Golan, Rotem
AU - Lazar, Boaz
AU - Wurgaft, Eyal
AU - Lensky, Nadav
AU - Ganor, Jiwchar
AU - Gavrieli, Ittai
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017/6/15
Y1 - 2017/6/15
N2 - Chemical precipitation of CaCO3 occurs in diverse marine and lacustrine environments. In the hypersaline Ca-chloride lakes that have been occupying the Dead Sea basin since the late Pleistocene, CaCO3 precipitated, mostly as aragonite. The aragonite sediments precipitated mainly during periods of high lake level stands as a result of mixing of bicarbonate-rich freshwater runoff with Dead Sea brine, that is Ca-rich and have high Mg/Ca ratio. During periods of arid conditions with limited freshwater inflow, water level declined, salinity increased and gypsum and halite became the dominant evaporitic minerals to precipitate. The present study investigates the carbon cycle of the Dead Sea under the current limited water and bicarbonate supply to the brine, representing periods of extremely arid conditions. The decrease of inflows to the Dead Sea in recent years stems mainly from diversion of freshwater from the drainage basin and results in dramatic water level decline and massive halite precipitation. During 2013–2014, bi-monthly depth profiles of total alkalinity, dissolved inorganic carbon (DIC) and its isotopic composition (δ13C) were conducted in the Dead Sea, from surface down to the bottom of the lake (290 m). Mass balance calculations conducted for the period 1993–2013 show that while inventories of conservative ions such as Mg2+ remained constant, the net DIC inventory of the lake decreased by ∼10%. DIC supply to the lake during this period, however, amounted to ∼10% of lake's inventory indicating that during 20 years, the lake lost ∼20% of its 1993s inventory. Compilation of historical data with our data shows that during the past two decades the lake's low DIC (∼1 mmol kg−1) and very high PCO2 (1800 ppm V) remained relatively constant, suggesting that a quasi-steady-state situation prevails. In spite of the surprisingly stable DIC and CO2 concentrations, during this 20 year period δ13CDIC increased significantly, from 1.4‰ to 2.7‰. An isotopic mass balance calculation together with the high PCO2 of the brine show that during that period the lake lost about 3.7 · 1010 moles of DIC, of which ∼60% by CO2 degassing and ∼40% by aragonite precipitation. The deviation from the common 1:1 CO2:CaCO3 ratio in most aqueous systems is facilitated by the dominance of the borate alkalinity of the Dead Sea. Nucleation and crystal growth experiments suggest that throughout this time the Dead Sea remained supersaturated with respect to aragonite, a situation facilitated by combination of slow nucleation rates and absence of growth surfaces. The very high PCO2 of the Dead Sea is maintained by the low CO2 piston velocity of the brine, calculated to be only ∼4.5 m yr−1, more than an order of magnitude slower than seawater value.
AB - Chemical precipitation of CaCO3 occurs in diverse marine and lacustrine environments. In the hypersaline Ca-chloride lakes that have been occupying the Dead Sea basin since the late Pleistocene, CaCO3 precipitated, mostly as aragonite. The aragonite sediments precipitated mainly during periods of high lake level stands as a result of mixing of bicarbonate-rich freshwater runoff with Dead Sea brine, that is Ca-rich and have high Mg/Ca ratio. During periods of arid conditions with limited freshwater inflow, water level declined, salinity increased and gypsum and halite became the dominant evaporitic minerals to precipitate. The present study investigates the carbon cycle of the Dead Sea under the current limited water and bicarbonate supply to the brine, representing periods of extremely arid conditions. The decrease of inflows to the Dead Sea in recent years stems mainly from diversion of freshwater from the drainage basin and results in dramatic water level decline and massive halite precipitation. During 2013–2014, bi-monthly depth profiles of total alkalinity, dissolved inorganic carbon (DIC) and its isotopic composition (δ13C) were conducted in the Dead Sea, from surface down to the bottom of the lake (290 m). Mass balance calculations conducted for the period 1993–2013 show that while inventories of conservative ions such as Mg2+ remained constant, the net DIC inventory of the lake decreased by ∼10%. DIC supply to the lake during this period, however, amounted to ∼10% of lake's inventory indicating that during 20 years, the lake lost ∼20% of its 1993s inventory. Compilation of historical data with our data shows that during the past two decades the lake's low DIC (∼1 mmol kg−1) and very high PCO2 (1800 ppm V) remained relatively constant, suggesting that a quasi-steady-state situation prevails. In spite of the surprisingly stable DIC and CO2 concentrations, during this 20 year period δ13CDIC increased significantly, from 1.4‰ to 2.7‰. An isotopic mass balance calculation together with the high PCO2 of the brine show that during that period the lake lost about 3.7 · 1010 moles of DIC, of which ∼60% by CO2 degassing and ∼40% by aragonite precipitation. The deviation from the common 1:1 CO2:CaCO3 ratio in most aqueous systems is facilitated by the dominance of the borate alkalinity of the Dead Sea. Nucleation and crystal growth experiments suggest that throughout this time the Dead Sea remained supersaturated with respect to aragonite, a situation facilitated by combination of slow nucleation rates and absence of growth surfaces. The very high PCO2 of the Dead Sea is maintained by the low CO2 piston velocity of the brine, calculated to be only ∼4.5 m yr−1, more than an order of magnitude slower than seawater value.
KW - Alkalinity
KW - Aragonite
KW - Carbon cycle
KW - Carbonate
KW - Dead Sea
UR - http://www.scopus.com/inward/record.url?scp=85016946321&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2017.02.031
DO - 10.1016/j.gca.2017.02.031
M3 - Article
AN - SCOPUS:85016946321
SN - 0016-7037
VL - 207
SP - 43
EP - 56
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -