Continuum mechanics, stresses, currents and electrodynamics

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


The Eulerian approach to continuum mechanics does not make use of a body manifold. Rather, all fields considered are defined on the space, or the space- Time, manifolds. Sections of some vector bundle represent generalized velocities which need not be associated with the motion of material points. Using the theories of de Rham currents and generalized sections of vector bundles, we formulate a weak theory of forces and stresses represented by vectorvalued currents. Considering generalized velocities represented by differential forms and interpreting such a form as a generalized potential field, we present a weak formulation of pre-metric, p-form electrodynamics as a natural example of the foregoing theory. Finally, it is shown that the assumptions leading to p-form electrodynamicsmay be replaced by the condition that the force functional is continuous with respect to the flat topology of forms.

Original languageEnglish
Article number20150174
JournalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Issue number2066
StatePublished - 28 Apr 2016


  • Continuum mechanics
  • Maxwell's equations
  • P-form electrodynamics
  • Pre-metric electrodynamics
  • Stress
  • Vector-valued de rham currents

ASJC Scopus subject areas

  • Mathematics (all)
  • Engineering (all)
  • Physics and Astronomy (all)


Dive into the research topics of 'Continuum mechanics, stresses, currents and electrodynamics'. Together they form a unique fingerprint.

Cite this