TY - JOUR
T1 - Controlled carbon nanotube layers for impedimetric immunosensors
T2 - High performance label free detection and quantification of anti-cholera toxin antibody
AU - Palomar, Quentin
AU - Gondran, Chantal
AU - Holzinger, Michael
AU - Marks, Robert
AU - Cosnier, Serge
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/11/15
Y1 - 2017/11/15
N2 - An original impedimetric immunosensor was developed based on carbon nanotube (CNT) deposits with controlled thicknesses for enhanced electroactive surface areas leading to improved sensor performances. Cholera monitoring was chosen as the model immune system for this setup. These CNT deposits were characterized using confocal laser microscopy and electrochemical methods. To form the sensor device, the CNT deposits were functionalized via electrocoating of polypyrrole-nitrilotriacetic acid (poly(pyrrole-NTA)) followed by the formation of a Cu (II) complex with the NTA functions. The bioreceptor unit, cholera toxin B Subunit, modified with biotin, was then immobilized via coordination of the biotin groups with the NTA-Cu(II) complex. Each step of the formation of the immunosensor and the subsequent binding of the analyte antibody anti-cholera toxin were investigated with cyclic voltammetry and Electrochemical Impedance Spectroscopy. After optimization, the resulting impedimetric cholera sensor shows excellent reproducibility, increased sensitivities, a very satisfying detection limit of 10−13 g mL−1 and an exceptional linear range for anti-cholera detection of 8 orders of magnitude (10−13–10−5 g mL−1) and a sensitivity of 24.7 ± 0.4 Ω per order of magnitude.
AB - An original impedimetric immunosensor was developed based on carbon nanotube (CNT) deposits with controlled thicknesses for enhanced electroactive surface areas leading to improved sensor performances. Cholera monitoring was chosen as the model immune system for this setup. These CNT deposits were characterized using confocal laser microscopy and electrochemical methods. To form the sensor device, the CNT deposits were functionalized via electrocoating of polypyrrole-nitrilotriacetic acid (poly(pyrrole-NTA)) followed by the formation of a Cu (II) complex with the NTA functions. The bioreceptor unit, cholera toxin B Subunit, modified with biotin, was then immobilized via coordination of the biotin groups with the NTA-Cu(II) complex. Each step of the formation of the immunosensor and the subsequent binding of the analyte antibody anti-cholera toxin were investigated with cyclic voltammetry and Electrochemical Impedance Spectroscopy. After optimization, the resulting impedimetric cholera sensor shows excellent reproducibility, increased sensitivities, a very satisfying detection limit of 10−13 g mL−1 and an exceptional linear range for anti-cholera detection of 8 orders of magnitude (10−13–10−5 g mL−1) and a sensitivity of 24.7 ± 0.4 Ω per order of magnitude.
KW - Carbon nanotube deposits
KW - Cholera toxin
KW - Electrochemical Impedance Spectroscopy
KW - Immunosensor
UR - http://www.scopus.com/inward/record.url?scp=85020266136&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2017.05.052
DO - 10.1016/j.bios.2017.05.052
M3 - Article
C2 - 28599177
AN - SCOPUS:85020266136
SN - 0956-5663
VL - 97
SP - 177
EP - 183
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
ER -