TY - JOUR
T1 - Coralline Skeleton Biomaterial Reduces Phagocytosis in Mouse Blood in vitro
AU - Gancz, Ayala
AU - Zueva, Yekaterina
AU - Weiss, Orly E.
AU - Hendler, Roni M.
AU - Minnes, Rafael
AU - Baranes, Danny
N1 - Publisher Copyright:
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Inflammatory and immunogenic response to foreign bodies presents a challenge in the use of biomaterials as implants for tissue restoration. Therefore, there is a need to understand the interactions between such implants and the blood. One such material, currently in clinical use for bone replacement in humans, is the skeleton of corals, in the form of crystalline aragonite. This biomaterial has been shown to impart a protective and supportive influence on several types of cells ex vivo. The carbonate skeleton activates secretion in phagocytes in vitro, however its effects on these cells in the blood, and on the process of phagocytosis itself, remain unknown. Using 1–500 μm particles of coral skeleton, we show that these particles bind blood proteins and alter the leukocyte population, reducing the proportion of granulocytes by more than 3-fold with no effect on the proportion of monocytes. In addition, the presence of coral skeleton in the blood causes a reduction in phagocytosis. Specifically, we observed a decrease in the percentage of phagocytic cells by 27 % in the granulocytes and by 73 % in monocyte family, as well as a 41.6 % reduction in the MFI of granulocytes, but with no such effect on monocytes. Taken together, the results suggest that the coral skeleton biomaterial may act as a strong, promotive scaffold for tissue regeneration due to its ability to reduce its rejection by inflammatory reactions such as phagocytosis.
AB - Inflammatory and immunogenic response to foreign bodies presents a challenge in the use of biomaterials as implants for tissue restoration. Therefore, there is a need to understand the interactions between such implants and the blood. One such material, currently in clinical use for bone replacement in humans, is the skeleton of corals, in the form of crystalline aragonite. This biomaterial has been shown to impart a protective and supportive influence on several types of cells ex vivo. The carbonate skeleton activates secretion in phagocytes in vitro, however its effects on these cells in the blood, and on the process of phagocytosis itself, remain unknown. Using 1–500 μm particles of coral skeleton, we show that these particles bind blood proteins and alter the leukocyte population, reducing the proportion of granulocytes by more than 3-fold with no effect on the proportion of monocytes. In addition, the presence of coral skeleton in the blood causes a reduction in phagocytosis. Specifically, we observed a decrease in the percentage of phagocytic cells by 27 % in the granulocytes and by 73 % in monocyte family, as well as a 41.6 % reduction in the MFI of granulocytes, but with no such effect on monocytes. Taken together, the results suggest that the coral skeleton biomaterial may act as a strong, promotive scaffold for tissue regeneration due to its ability to reduce its rejection by inflammatory reactions such as phagocytosis.
KW - Coralline
KW - Granulocytes
KW - Monocytes
KW - coral
KW - phagocytosis
UR - http://www.scopus.com/inward/record.url?scp=85084154845&partnerID=8YFLogxK
U2 - 10.1002/ijch.201900151
DO - 10.1002/ijch.201900151
M3 - Article
AN - SCOPUS:85084154845
SN - 0021-2148
VL - 60
SP - 586
EP - 592
JO - Israel Journal of Chemistry
JF - Israel Journal of Chemistry
IS - 5-6
ER -