Correction To: Free sequences and the tightness of pseudoradial spaces (Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, (2020), 114, 3, (130), 10.1007/s13398-020-00861-z)

Santi Spadaro

Research output: Contribution to journalComment/debate

Abstract

In the proof of Theorem 9 it is tacitly assumed that p is not in the closure of Sx , whenever x ≠ p. This is not necessarily true, but it can be arranged because the space is Hausdorff. To correct the proof, just insert the following line after the period on Page 5, Line 9: Moreover, if x ≠ p we can assume that p (Formula presented.).

Original languageEnglish
Article number95
JournalRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
Volume115
Issue number2
DOIs
StatePublished - 1 Apr 2021
Externally publishedYes

ASJC Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Correction To: Free sequences and the tightness of pseudoradial spaces (Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, (2020), 114, 3, (130), 10.1007/s13398-020-00861-z)'. Together they form a unique fingerprint.

Cite this