Correlation between anomalous hydrogen absorption and 56 bonding strength in the Zr(AlxFe1-x)2 system

A. Israel, I. Jacob, R. Moreh, O. Shahal, A. Wolf, M. Fogel

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The nuclear-resonant-photon-scattering technique was utilized to monitor the iron binding properties in the intermetallic Zr(AlxFe1-x)2 system. The 56Fe isotope scatters elastically 8.512-MeV γ rays emitted by a Cr(n,γ) source. An experimental comparison of the scattered intensity from the different compounds reflects the corresponding variation of the iron cohesion properties. The experimental results were quantified by evaluating the mean vibrational kinetic energies or effective temperatures, Te, of the resonant iron nuclei in the specific compounds considered. The 56Fe effective temperature at room temperature was found to be 350(10), 337(16), 309(15), and 358(17) K for x=0, 0.083, 0.2, and 0.5, respectively. The results indicate clearly a minimum of the Fe bonding strength in the Zr(AlxFe1-x)2 compounds at x=0.2. This minimum correlates nicely with the maximum hydrogen absorption in the above intermetallic system, which may be therefore considered to provide further support for the rule of reverse hydrogen absorption capacity. The conclusions of the present study are utilized to indicate ways for tailoring hydrogen absorption behavior in certain cases.

Original languageEnglish
Pages (from-to)3564-3569
Number of pages6
JournalPhysical Review B
Volume50
Issue number6
DOIs
StatePublished - 1 Jan 1994

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Correlation between anomalous hydrogen absorption and 56 bonding strength in the Zr(AlxFe1-x)2 system'. Together they form a unique fingerprint.

Cite this