Counterbalancing Learning and Strategic Incentives in Allocation Markets

Jamie Kang, Faidra Monachou, Moran Koren, Itai Ashlagi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Motivated by the high discard rate of donated organs in the United States, we study an allocation problem in the presence of learning and strategic incentives. We consider a setting where a benevolent social planner decides whether and how to allocate a single indivisible object to a queue of strategic agents. The object has a common true quality, good or bad, which is ex-ante unknown to everyone. Each agent holds an informative, yet noisy, private signal about the quality. To make a correct allocation decision the planner attempts to learn the object quality by truthfully eliciting agents' signals. Under the commonly applied sequential offering mechanism, we show that learning is hampered by the presence of strategic incentives as herding may emerge. This can result in incorrect allocation and welfare loss. To overcome these issues, we propose a novel class of incentive-compatible mechanisms. Our mechanism involves a batch-by-batch, dynamic voting process using a majority rule. We prove that the proposed voting mechanisms improve the probability of correct allocation whenever agents are sufficiently well informed. Particularly, we show that such an improvement can be achieved via a simple greedy algorithm. We quantify the improvement using simulations.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages11184-11195
Number of pages12
ISBN (Electronic)9781713845393
StatePublished - 1 Jan 2021
Externally publishedYes
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: 6 Dec 202114 Dec 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume14
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period6/12/2114/12/21

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Counterbalancing Learning and Strategic Incentives in Allocation Markets'. Together they form a unique fingerprint.

Cite this