TY - JOUR
T1 - CPLLM
T2 - Clinical prediction with large language models
AU - Ben Shoham, Ofir
AU - Rappoport, Nadav
N1 - Publisher Copyright:
© 2024 Ben Shoham, Rappoport. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/12/1
Y1 - 2024/12/1
N2 - We present Clinical Prediction with Large Language Models (CPLLM), a method that involves fine-tuning a pre-trained Large Language Model (LLM) for predicting clinical disease and readmission. We utilized quantization and fine-tuned the LLM using prompts. For diagnostic predictions, we predicted whether patients would be diagnosed with a target disease during their next visit or in the subsequent diagnosis, leveraging their historical medical records. We compared our results to various baselines, including Retain and Med-BERT, the latter of which is the current state-of-the-art model for disease prediction using temporal structured EHR data. In addition, we also evaluated CPLLM’s utility in predicting hospital readmission and compared our method’s performance with benchmark baselines. Our experiments ultimately revealed that our proposed method, CPLLM, surpasses all the tested models in terms of PR-AUC and ROC-AUC metrics, providing state-of-the-art performance as a tool for predicting disease diagnosis and patient hospital readmission without requiring pre-training on medical data. Such a method can be easily implemented and integrated into the clinical workflow to help care providers plan next steps for their patients.
AB - We present Clinical Prediction with Large Language Models (CPLLM), a method that involves fine-tuning a pre-trained Large Language Model (LLM) for predicting clinical disease and readmission. We utilized quantization and fine-tuned the LLM using prompts. For diagnostic predictions, we predicted whether patients would be diagnosed with a target disease during their next visit or in the subsequent diagnosis, leveraging their historical medical records. We compared our results to various baselines, including Retain and Med-BERT, the latter of which is the current state-of-the-art model for disease prediction using temporal structured EHR data. In addition, we also evaluated CPLLM’s utility in predicting hospital readmission and compared our method’s performance with benchmark baselines. Our experiments ultimately revealed that our proposed method, CPLLM, surpasses all the tested models in terms of PR-AUC and ROC-AUC metrics, providing state-of-the-art performance as a tool for predicting disease diagnosis and patient hospital readmission without requiring pre-training on medical data. Such a method can be easily implemented and integrated into the clinical workflow to help care providers plan next steps for their patients.
UR - http://www.scopus.com/inward/record.url?scp=85211718531&partnerID=8YFLogxK
U2 - 10.1371/journal.pdig.0000680
DO - 10.1371/journal.pdig.0000680
M3 - Article
C2 - 39642102
AN - SCOPUS:85211718531
SN - 2767-3170
VL - 3
JO - PLOS Digital Health
JF - PLOS Digital Health
IS - 12
M1 - e0000680
ER -