TY - JOUR
T1 - Cramér-Rao Bound Under Norm Constraint
AU - Nitzan, Eyal
AU - Routtenberg, Tirza
AU - Tabrikian, Joseph
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2019/6
Y1 - 2019/6
N2 - The constrained Cramér-Rao bound (CCRB) is a benchmark for constrained parameter estimation. However, the CCRB unbiasedness conditions are too strict and thus, the CCRB may not be a lower bound for estimators under constraints. The recently developed Lehmann-unbiased-CCRB (LU-CCRB) was shown to be a lower bound for the commonly used constrained maximum likelihood (CML) estimator performance in cases where the CCRB is not. In constrained parameter estimation, the estimator is usually required to satisfy the constraints. However, the LU-CCRB is a lower bound for Lehmann-unbiased estimators that do not necessarily satisfy the constraints. In this letter, we consider the norm constraint and derive a novel bound, called norm-constrained CCRB (NC-CCRB), which is a lower bound on the mean-squared-error matrix trace of Lehmann-unbiased estimators that satisfy the norm constraint. The NC-CCRB is shown to be tighter than the LU-CCRB. In the simulations, we consider a linear estimation problem under norm constraint in which the proposed NC-CCRB better predicts the performance of the CML estimator than the CCRB trace and the LU-CCRB.
AB - The constrained Cramér-Rao bound (CCRB) is a benchmark for constrained parameter estimation. However, the CCRB unbiasedness conditions are too strict and thus, the CCRB may not be a lower bound for estimators under constraints. The recently developed Lehmann-unbiased-CCRB (LU-CCRB) was shown to be a lower bound for the commonly used constrained maximum likelihood (CML) estimator performance in cases where the CCRB is not. In constrained parameter estimation, the estimator is usually required to satisfy the constraints. However, the LU-CCRB is a lower bound for Lehmann-unbiased estimators that do not necessarily satisfy the constraints. In this letter, we consider the norm constraint and derive a novel bound, called norm-constrained CCRB (NC-CCRB), which is a lower bound on the mean-squared-error matrix trace of Lehmann-unbiased estimators that satisfy the norm constraint. The NC-CCRB is shown to be tighter than the LU-CCRB. In the simulations, we consider a linear estimation problem under norm constraint in which the proposed NC-CCRB better predicts the performance of the CML estimator than the CCRB trace and the LU-CCRB.
U2 - 10.1109/LSP.2019.2929411
DO - 10.1109/LSP.2019.2929411
M3 - Article
SN - 1558-2361
VL - 26
SP - 1393
EP - 1397
JO - IEEE Signal Processing Letters
JF - IEEE Signal Processing Letters
IS - 9
ER -