Cross-seeding between Aβ and SEVI indicates a pathogenic link and gender difference between alzheimer diseases and AIDS

Yijing Tang, Dong Zhang, Yanxian Zhang, Yonglan Liu, Yifat Miller, Keven Gong, Jie Zheng

Research output: Contribution to journalArticlepeer-review

Abstract

Amyloid-β (Aβ) and semen-derived enhancer of viral infection (SEVI) are considered as the two causative proteins for central pathogenic cause of Alzheimer’s disease (AD) and HIV/AIDS, respectively. Separately, Aβ-AD and SEVI-HIV/AIDS systems have been studied extensively both in fundamental research and in clinical trials. Despite significant differences between Aβ-AD and SEVI-HIV/AIDS systems, they share some commonalities on amyloid and antimicrobial characteristics between Aβ and SEVI, there are apparent overlaps in dysfunctional neurological symptoms between AD and HIV/AIDS. Few studies have reported a potential pathological link between Aβ-AD and SEVI-HIV/AIDS at a protein level. Here, we demonstrate the cross-seeding interactions between Aβ and SEVI proteins using in vitro and in vivo approaches. Cross-seeding of SEVI with Aβ enabled to completely prevent Aβ aggregation at sub-stoichiometric concentrations, disaggregate preformed Aβ fibrils, reduce Aβ-induced cell toxicity, and attenuate Aβ-accumulated paralysis in transgenic AD C. elegans. This work describes a potential crosstalk between AD and HIV/AIDS via the cross-seeding between Aβ and SEVI, identifies SEVI as Aβ inhibitor for possible treatment or prevention of AD, and explains the role of SEVI in the gender difference in AD.

Original languageEnglish
Article number417
JournalCommunications Biology
Volume5
Issue number1
DOIs
StatePublished - 1 Dec 2022

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology (all)
  • Agricultural and Biological Sciences (all)

Fingerprint

Dive into the research topics of 'Cross-seeding between Aβ and SEVI indicates a pathogenic link and gender difference between alzheimer diseases and AIDS'. Together they form a unique fingerprint.

Cite this