TY - GEN
T1 - CT-GAN
T2 - 28th USENIX Security Symposium
AU - Mirsky, Yisroel
AU - Mahler, Tom
AU - Shelef, Ilan
AU - Elovici, Yuval
N1 - Publisher Copyright:
© 2019 by The USENIX Association. All rights reserved.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - In 2018, clinics and hospitals were hit with numerous attacks leading to significant data breaches and interruptions in medical services. An attacker with access to medical records can do much more than hold the data for ransom or sell it on the black market. In this paper, we show how an attacker can use deep-learning to add or remove evidence of medical conditions from volumetric (3D) medical scans. An attacker may perform this act in order to stop a political candidate, sabotage research, commit insurance fraud, perform an act of terrorism, or even commit murder. We implement the attack using a 3D conditional GAN and show how the framework (CT-GAN) can be automated. Although the body is complex and 3D medical scans are very large, CT-GAN achieves realistic results which can be executed in milliseconds. To evaluate the attack, we focused on injecting and removing lung cancer from CT scans. We show how three expert radiologists and a state-of-the-art deep learning AI are highly susceptible to the attack. We also explore the attack surface of a modern radiology network and demonstrate one attack vector: we intercepted and manipulated CT scans in an active hospital network with a covert penetration test.
AB - In 2018, clinics and hospitals were hit with numerous attacks leading to significant data breaches and interruptions in medical services. An attacker with access to medical records can do much more than hold the data for ransom or sell it on the black market. In this paper, we show how an attacker can use deep-learning to add or remove evidence of medical conditions from volumetric (3D) medical scans. An attacker may perform this act in order to stop a political candidate, sabotage research, commit insurance fraud, perform an act of terrorism, or even commit murder. We implement the attack using a 3D conditional GAN and show how the framework (CT-GAN) can be automated. Although the body is complex and 3D medical scans are very large, CT-GAN achieves realistic results which can be executed in milliseconds. To evaluate the attack, we focused on injecting and removing lung cancer from CT scans. We show how three expert radiologists and a state-of-the-art deep learning AI are highly susceptible to the attack. We also explore the attack surface of a modern radiology network and demonstrate one attack vector: we intercepted and manipulated CT scans in an active hospital network with a covert penetration test.
UR - http://www.scopus.com/inward/record.url?scp=85076020389&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85076020389
T3 - Proceedings of the 28th USENIX Security Symposium
SP - 461
EP - 478
BT - Proceedings of the 28th USENIX Security Symposium
PB - USENIX Association
Y2 - 14 August 2019 through 16 August 2019
ER -