TY - JOUR
T1 - Cyclic AMP inhibits phosphatidylinositol-coupled and -uncoupled mitogenic signals in T lymphocytes
T2 - Evidence that cAMP alters PKC-induced transcription regulation of members of the jun and fos family of genes
AU - Tamir, Ami
AU - Isakov, Noah
PY - 1994/4/1
Y1 - 1994/4/1
N2 - T lymphocyte stimulation via the Ag receptor results in activation of phospholipase Cγ1 that catalyses the hydrolysis of phosphatidylinositol (PI). The hydrolysis generates inositol phosphate and diacylglycerol, which in turn, increase intracellular Ca2+ concentration and activates protein kinase C, respectively. Agonists operating via the adenylate cyclase pathway or cell permeable cAMP analogues inhibit T cell activation by interfering with the PI-turnover. We have shown that dbcAMP inhibits PI-independent mitogenic signals in T cells after stimulation with TPA plus ionomycin. dbcAMP inhibited the TPA plus ionomycin-induced transcription of 1L-2 and IL-2R genes in EL4 cells, suggesting interference with biochemic events downstream to PI hydrolysis and upstream to transcription of early activation genes. Because many of the early genes operating in T cell mitogenesis possess a TPA-response element (TRE) in their promoter region, we tested the effect of cAMP on the TRE-binding protein, AP-1. dbcAMP increased the binding activity of nuclear proteins consisting of Fos:Jun heterodimers to a TRE-containing oligonucletide, but altered the composition of Jun proteins in the AP-1. Furthermore, the TPA plus ionomycin-induced transcription program of members of the jun and fos family of genes was altered by dbcAMP, suggesting that inhibition of T cell proliferation by dbcAMP is a consequence of intervention in transcriptional regulation by TRE-binding proteins.
AB - T lymphocyte stimulation via the Ag receptor results in activation of phospholipase Cγ1 that catalyses the hydrolysis of phosphatidylinositol (PI). The hydrolysis generates inositol phosphate and diacylglycerol, which in turn, increase intracellular Ca2+ concentration and activates protein kinase C, respectively. Agonists operating via the adenylate cyclase pathway or cell permeable cAMP analogues inhibit T cell activation by interfering with the PI-turnover. We have shown that dbcAMP inhibits PI-independent mitogenic signals in T cells after stimulation with TPA plus ionomycin. dbcAMP inhibited the TPA plus ionomycin-induced transcription of 1L-2 and IL-2R genes in EL4 cells, suggesting interference with biochemic events downstream to PI hydrolysis and upstream to transcription of early activation genes. Because many of the early genes operating in T cell mitogenesis possess a TPA-response element (TRE) in their promoter region, we tested the effect of cAMP on the TRE-binding protein, AP-1. dbcAMP increased the binding activity of nuclear proteins consisting of Fos:Jun heterodimers to a TRE-containing oligonucletide, but altered the composition of Jun proteins in the AP-1. Furthermore, the TPA plus ionomycin-induced transcription program of members of the jun and fos family of genes was altered by dbcAMP, suggesting that inhibition of T cell proliferation by dbcAMP is a consequence of intervention in transcriptional regulation by TRE-binding proteins.
UR - http://www.scopus.com/inward/record.url?scp=0028231383&partnerID=8YFLogxK
M3 - Article
C2 - 8144923
AN - SCOPUS:0028231383
SN - 0022-1767
VL - 152
SP - 3391
EP - 3399
JO - Journal of Immunology
JF - Journal of Immunology
IS - 7
ER -