Damage Assessment in Rural Environments Following Natural Disasters Using Multi-Sensor Remote Sensing Data

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


The damage caused by natural disasters in rural areas differs in nature extent, landscape, and structure, from the damage caused in urban environments. Previous and current studies have focused mainly on mapping damaged structures in urban areas after catastrophic events such as earthquakes or tsunamis. However, research focusing on the level of damage or its distribution in rural areas is lacking. This study presents a methodology for mapping, characterizing, and assessing the damage in rural environments following natural disasters, both in built-up and vegetation areas, by combining synthetic-aperture radar (SAR) and optical remote sensing data. As a case study, we applied the methodology to characterize the rural areas affected by the Sulawesi earthquake and the subsequent tsunami event in Indonesia that occurred on 28 September 2018. High-resolution COSMO-SkyMed images obtained pre- and post-event, alongside Sentinel-2 images, were used as inputs. This study’s results emphasize that remote sensing data from rural areas must be treated differently from that of urban areas following a disaster. Additionally, the analysis must include the surrounding features, not only the damaged structures. Furthermore, the results highlight the applicability of the methodology for a variety of disaster events, as well as multiple hazards, and can be adapted using a combination of different optical and SAR sensors.

Original languageEnglish
Article number9998
Issue number24
StatePublished - 1 Dec 2022


  • InSAR
  • damage assessment
  • multi-hazard
  • multi-sensor
  • rural
  • urban
  • vegetation

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering
  • Biochemistry


Dive into the research topics of 'Damage Assessment in Rural Environments Following Natural Disasters Using Multi-Sensor Remote Sensing Data'. Together they form a unique fingerprint.

Cite this