TY - GEN
T1 - Debguer
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
AU - Elmishali, Amir
AU - Stern, Roni
AU - Kalech, Meir
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - In this paper, we present the DeBGUer tool, a web-based tool for prediction and isolation of software bugs. DeBGUer is a partial implementation of the Learn, Diagnose, and Plan (LDP) paradigm, which is a recently introduced paradigm for integrating Artificial Intelligence (AI) in the software bug detection and correction process. In LDP, a diagnosis (DX) algorithm is used to suggest possible explanations - diagnoses - for an observed bug. If needed, a test planning algorithm is subsequently used to suggest further testing. Both diagnosis and test planning algorithms consider a fault prediction model, which associates each software component (e.g., class or method) with the likelihood that it contains a bug. DeBGUer implements the first two components of LDP, bug prediction (Learn) and bug diagnosis (Diagnose). It provides an easy-to-use web interface, and has been successfully tested on 12 projects.
AB - In this paper, we present the DeBGUer tool, a web-based tool for prediction and isolation of software bugs. DeBGUer is a partial implementation of the Learn, Diagnose, and Plan (LDP) paradigm, which is a recently introduced paradigm for integrating Artificial Intelligence (AI) in the software bug detection and correction process. In LDP, a diagnosis (DX) algorithm is used to suggest possible explanations - diagnoses - for an observed bug. If needed, a test planning algorithm is subsequently used to suggest further testing. Both diagnosis and test planning algorithms consider a fault prediction model, which associates each software component (e.g., class or method) with the likelihood that it contains a bug. DeBGUer implements the first two components of LDP, bug prediction (Learn) and bug diagnosis (Diagnose). It provides an easy-to-use web interface, and has been successfully tested on 12 projects.
UR - http://www.scopus.com/inward/record.url?scp=85090803235&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85090803235
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 9446
EP - 9451
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
Y2 - 27 January 2019 through 1 February 2019
ER -