Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France

Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, Guillaume Lacquement

Research output: Contribution to journalArticlepeer-review

Abstract

Warming trends are responsible for an observed decrease of water discharge in southern France (northwestern Mediterranean). Ongoing climate change and the likely increase of water demand threaten the availability of water resources over the coming decades. Drought indices like the Reconnaissance Drought Index (RDI) are increasingly used in climate characterization studies, but little is known about the relationships between these indices, water resources, and the overall atmospheric circulation patterns. In this study, we investigate the relationships between the RDI, water discharge, and four atmospheric teleconnection patterns (TPs) for six coastal river basins in southern France, both for the historical period of the last 60 years and for a worst-case climatic scenario (RCP8.5) reaching the year 2100. We combine global and regional climate model (CGM and RCM, respectively) outputs with a set of observed climatic and hydrological data in order to investigate the past relationships between the RDI, water discharge, and TPs and to project their potential evolution in space and time. Results indicate that annual water discharge can be reduced by -49g % to -88g % by the end of the century under the extreme climate scenario conditions. Due to unequal links with TPs, the hydroclimatic evolution is unevenly distributed within the study area. Indeed a clustering analysis performed with the RDI time series detects two major climate clusters, separating the eastern and western part of the study region. The former indicates stronger relationships with the Atlantic TPs (e.g. the North Atlantic Oscillation (NAO) and the Scandinavian Oscillation (Scand) patterns), whereas the latter is more closely related to the Mediterranean TPs (Mediterranean Oscillation (MO) and Western Mediterranean Oscillation (WeMO)). The future climate simulations predict an antagonistic evolution in both clusters which are likely driven by decreasing trends of Scand and WeMO. The former provokes a general tendency of lower P in both clusters during spring, summer, and autumn, whereas the latter might partly compensate for this evolution by enhanced precipitation in the eastern cluster during autumn and winter. However, compared to observations, representation of the Mediterranean TPs WeMO and MO in the considered climate models is less satisfactory compared to the Atlantic TPs NAO and Scand, and further improvement of the model simulations therefore requires better representations of the Mediterranean TPs.

Original languageEnglish
Pages (from-to)6055-6071
Number of pages17
JournalHydrology and Earth System Sciences
Volume26
Issue number23
DOIs
StatePublished - 5 Dec 2022
Externally publishedYes

ASJC Scopus subject areas

  • Water Science and Technology
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France'. Together they form a unique fingerprint.

Cite this