TY - JOUR
T1 - Decoherence and entanglement in a bosonic Josephson junction
T2 - Bose-enhanced quantum Zeno control of phase diffusion
AU - Khodorkovsky, Y.
AU - Kurizki, G.
AU - Vardi, A.
PY - 2009/8/17
Y1 - 2009/8/17
N2 - We study the effect of decoherence on dynamical phase diffusion in the two-site Bose-Hubbard model. Starting with an odd parity excited coherent state, the initial loss of single-particle coherence varies from small bound oscillations in the Rabi regime, through hyperbolic depletion in the Josephson regime, to a Gaussian decay in the Fock regime. The inclusion of local-site noise, measuring the relative number difference between the modes, is shown to enhance phase diffusion. In comparison, site-indiscriminate noise measuring the population imbalance between the two quasimomentum modes slows down the loss of single-particle coherence. Decoherence thus either enhances or suppresses phase diffusion, depending on the details of system-bath coupling and the overlap of decoherence pointer states with collisional-entanglement pointer states. The deceleration of phase diffusion due to the coupling with the environment may be viewed as a many-body quantum Zeno effect. The extended effective decay times in the presence of projective measurement are further enhanced with increasing number of particles N by a bosonic factor of N in the Fock regime and N/logN in the Josephson regime.
AB - We study the effect of decoherence on dynamical phase diffusion in the two-site Bose-Hubbard model. Starting with an odd parity excited coherent state, the initial loss of single-particle coherence varies from small bound oscillations in the Rabi regime, through hyperbolic depletion in the Josephson regime, to a Gaussian decay in the Fock regime. The inclusion of local-site noise, measuring the relative number difference between the modes, is shown to enhance phase diffusion. In comparison, site-indiscriminate noise measuring the population imbalance between the two quasimomentum modes slows down the loss of single-particle coherence. Decoherence thus either enhances or suppresses phase diffusion, depending on the details of system-bath coupling and the overlap of decoherence pointer states with collisional-entanglement pointer states. The deceleration of phase diffusion due to the coupling with the environment may be viewed as a many-body quantum Zeno effect. The extended effective decay times in the presence of projective measurement are further enhanced with increasing number of particles N by a bosonic factor of N in the Fock regime and N/logN in the Josephson regime.
UR - http://www.scopus.com/inward/record.url?scp=68949163930&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.80.023609
DO - 10.1103/PhysRevA.80.023609
M3 - Article
AN - SCOPUS:68949163930
SN - 1050-2947
VL - 80
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 2
M1 - 023609
ER -