TY - UNPB
T1 - DeepDPM: Deep Clustering With an Unknown Number of Clusters.
AU - Ronen, Meitar
AU - Finder, Shahaf E.
AU - Freifeld, Oren
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2022
Y1 - 2022
N2 - Deep Learning (DL) has shown great promise in the unsupervised task of clustering. That said, while in classical (i.e., non-deep) clustering the benefits of the nonparametric approach are well known, most deep-clustering methods are parametric: namely, they require a predefined and fixed number of clusters, denoted by K. When K is unknown, however, using model-selection criteria to choose its optimal value might become computationally expensive, especially in DL as the training process would have to be repeated numerous times. In this work, we bridge this gap by introducing an effective deep-clustering method that does not require knowing the value of K as it infers it during the learning. Using a split/merge framework, a dynamic architecture that adapts to the changing K, and a novel loss, our proposed method outperforms existing nonparametric methods (both classical and deep ones). While the very few existing deep nonparametric methods lack scalability, we demonstrate ours by being the first to report the performance of such a method on ImageNet. We alsodemonstrate the importance of inferring K by showing how methods that fix it deteriorate in performance when their assumed K value gets further from the ground-truth one, especially on imbalanced datasets. Our code is available
AB - Deep Learning (DL) has shown great promise in the unsupervised task of clustering. That said, while in classical (i.e., non-deep) clustering the benefits of the nonparametric approach are well known, most deep-clustering methods are parametric: namely, they require a predefined and fixed number of clusters, denoted by K. When K is unknown, however, using model-selection criteria to choose its optimal value might become computationally expensive, especially in DL as the training process would have to be repeated numerous times. In this work, we bridge this gap by introducing an effective deep-clustering method that does not require knowing the value of K as it infers it during the learning. Using a split/merge framework, a dynamic architecture that adapts to the changing K, and a novel loss, our proposed method outperforms existing nonparametric methods (both classical and deep ones). While the very few existing deep nonparametric methods lack scalability, we demonstrate ours by being the first to report the performance of such a method on ImageNet. We alsodemonstrate the importance of inferring K by showing how methods that fix it deteriorate in performance when their assumed K value gets further from the ground-truth one, especially on imbalanced datasets. Our code is available
U2 - 10.48550/arXiv.2203.14309
DO - 10.48550/arXiv.2203.14309
M3 - Preprint
VL - abs/2203.14309
T3 - CoRR
BT - DeepDPM: Deep Clustering With an Unknown Number of Clusters.
ER -