Demand-aware network designs of bounded degree

Chen Avin, Kaushik Mondal, Stefan Schmid

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations


Traditionally, networks such as datacenter interconnects are designed to optimize worst-case performance under arbitrary traffic patterns. Such network designs can however be far from optimal when considering the actual workloads and traffic patterns which they serve. This insight led to the development of demand-aware datacenter interconnects which can be reconfigured depending on the workload. Motivated by these trends, this paper initiates the algorithmic study of demand-aware networks (DANs), and in particular the design of bounded-degree networks. The inputs to the network design problem are a discrete communication request distribution, D, defined over communicating pairs from the node set V, and a bound, Δ, on the maximum degree. In turn, our objective is to design an (undirected) demand-aware network N = (V, E) of bounded-degree Δ, which provides short routing paths between frequently communicating nodes distributed across N. In particular, the designed network should minimize the expected path length on N (with respect to D), which is a basic measure of the efficiency of the network. We show that this fundamental network design problem exhibits interesting connections to several classic combinatorial problems and to information theory. We derive a general lower bound based on the entropy of the communication pattern D, and present asymptotically optimal network-aware design algorithms for important distribution families, such as sparse distributions and distributions of locally bounded doubling dimensions.

Original languageEnglish
Title of host publication31st International Symposium on Distributed Computing, DISC 2017
EditorsAndrea W. Richa
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959770538
StatePublished - 1 Oct 2017
Event31st International Symposium on Distributed Computing, DISC 2017 - Vienna, Austria
Duration: 16 Oct 201720 Oct 2017

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
ISSN (Print)1868-8969


Conference31st International Symposium on Distributed Computing, DISC 2017


  • Datacenter topology
  • Entropy
  • Network design
  • Peer-topeer computing
  • Reconfigurable networks
  • Sparse spanners

ASJC Scopus subject areas

  • Software


Dive into the research topics of 'Demand-aware network designs of bounded degree'. Together they form a unique fingerprint.

Cite this