Detection of breathing sounds during sleep using non-contact audio recordings

T. Rosenwein, E. Dafna, Ariel Tarasiuk, Yaniv Zigel

Research output: Contribution to conferencePaperpeer-review

11 Scopus citations

Abstract

Evaluation of respiratory activity during sleep is essential in order to reliably diagnose sleep disorder breathing (SDB); a condition associated with serious cardio-vascular morbidity and mortality. In the current study, we developed and validated a robust automatic breathing-sounds (i.e. inspiratory and expiratory sounds) detection system of audio signals acquired during sleep. Random forest classifier was trained and tested using inspiratory/expiratory/noise events (episodes), acquired from 84 subjects consecutively and prospectively referred to SDB diagnosis in sleep laboratory and in at-home environment. More than 560,000 events were analyzed, including a variety of recording devices and different environments. The system's overall accuracy rate is 88.8%, with accuracy rate of 91.2% and 83.6% in in-laboratory and at-home environments respectively, when classifying between inspiratory, expiratory, and noise classes. Here, we provide evidence that breathing-sounds can be reliably detected using non-contact audio technology in at-home environment. The proposed approach may improve our understanding of respiratory activity during sleep. This in return, will improve early SDB diagnosis and treatment.

Original languageEnglish
Pages1489-1492
Number of pages4
DOIs
StatePublished - 2 Nov 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: 26 Aug 201430 Aug 2014

Conference

Conference2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period26/08/1430/08/14

Keywords

  • audio signal processing
  • breathing-sounds detection
  • random forest
  • sleep disorder breathing

Fingerprint

Dive into the research topics of 'Detection of breathing sounds during sleep using non-contact audio recordings'. Together they form a unique fingerprint.

Cite this