Development and verification of the dynamic system code THERMO-T for research reactor accident analysis

Marat Margulis, Erez Gilad

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The application of best-estimate codes [coupled neutron kinetics (NK)/thermal hydraulics (TH)] for safety analyses of research reactors (RRs) has gained considerable momentum during the past decade. Application of these codes is largely facilitated by the high level of technological maturity and expertise that these codes allow as a safety technology in nuclear power plants, and it is largely driven by International Atomic Energy Agency activities. The present study belongs in this framework and presents the development and application of the coupled NK and TH code THERMO-T to the analysis of protected reactivity insertion accidents and loss-of-flow accidents in a typical RR with standard Materials Testing Reactor plate-type fuel elements. The coupling is realized by considering the neutronic reactivity feedbacks of the fuel and coolant temperatures and a heat generation model for the reactor power. The neutron flux in the reactor core is solved by applying point reactor kinetic equations and employing radial and axial power distributions calculated from a three-dimensional full-core model by the continuous-energy Monte Carlo reactor physics code Serpent. The evolution of temporal and spatial distributions of the fuel, cladding, and coolant temperatures is calculated for all fuel channels by using a finite volume time implicit numerical scheme for solving a three-conservation equation model. In this study, additional features, such as critical heat flux ratio prediction and decay heat model, are implemented for both highly enriched uranium and low-enriched uranium cores, and a comprehensive comparison of THERMO-T results is performed against other codes.

Original languageEnglish
Pages (from-to)377-395
Number of pages19
JournalNuclear Technology
Volume196
Issue number2
DOIs
StatePublished - 1 Nov 2016

Keywords

  • Research reactor
  • THERMO-T
  • Transient analysis

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Development and verification of the dynamic system code THERMO-T for research reactor accident analysis'. Together they form a unique fingerprint.

Cite this