TY - GEN
T1 - Development of model of the superdeep penetration of microparticles
AU - Simonenko, V. A.
AU - Bashurov, V. V.
AU - Skorkin, N. A.
AU - Elperin, T.
PY - 2008/1/1
Y1 - 2008/1/1
N2 - In 1974 an unusual phenomenon called Usherenko effect was observed in impact experiments [1,2]. Surprisingly large were impact produced craters whose depth varied between 100 and 10000 times the impactor's size. For materials whose static strength is small or zero, e.g., sand or water, the depth of penetration is no larger than 100 times the size. When a macro-size body impacts on a barrier, it produces a crater whose depth is normally in a ratio of no larger than 6-10 to the body's size regardless impact parameters. The papers [1,3] give overviews of models which were developed to explain the phenomenon. They all try to answer why material resistance to the penetration of micro-size impactors suddenly decreases. We suggest a model that uses the concept of particle entrainment by a shock produced by the impact of a bunch of particles on a barrier. The approach was proposed by V.A. Simonenko [4]. It is based on calculations by the finite-difference technique TWS [5,6]. Such an approach shows prospects for further development with account for new experimental results obtained after 1991. The goal of this paper is to demonstrate feasibility of applying this approach for justification of impactor's acceleration in solid.
AB - In 1974 an unusual phenomenon called Usherenko effect was observed in impact experiments [1,2]. Surprisingly large were impact produced craters whose depth varied between 100 and 10000 times the impactor's size. For materials whose static strength is small or zero, e.g., sand or water, the depth of penetration is no larger than 100 times the size. When a macro-size body impacts on a barrier, it produces a crater whose depth is normally in a ratio of no larger than 6-10 to the body's size regardless impact parameters. The papers [1,3] give overviews of models which were developed to explain the phenomenon. They all try to answer why material resistance to the penetration of micro-size impactors suddenly decreases. We suggest a model that uses the concept of particle entrainment by a shock produced by the impact of a bunch of particles on a barrier. The approach was proposed by V.A. Simonenko [4]. It is based on calculations by the finite-difference technique TWS [5,6]. Such an approach shows prospects for further development with account for new experimental results obtained after 1991. The goal of this paper is to demonstrate feasibility of applying this approach for justification of impactor's acceleration in solid.
KW - Effect Usherenko
KW - Method of the finite differenc
KW - Numerical modeling
KW - Penetration of microparticles
KW - Strong shock wave
UR - http://www.scopus.com/inward/record.url?scp=56349115094&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/amr.47-50.1266
DO - 10.4028/www.scientific.net/amr.47-50.1266
M3 - Conference contribution
AN - SCOPUS:56349115094
SN - 0878493786
SN - 9780878493784
T3 - Advanced Materials Research
SP - 1266
EP - 1269
BT - Multi-functional Materials and Structures - International Conference on Multifunctional Materials and Structures
PB - Trans Tech Publications
T2 - Multi-functional Materials and Structures - International Conference on Multifunctional Materials and Structures
Y2 - 28 July 2008 through 31 July 2008
ER -