@inproceedings{166b3400d98b4461a6aef3a50540567c,
title = "Deviation of Physiological from Chronological Age Is Associated with Health",
abstract = "Biological age may be of higher importance than chronological age, yet biological age is not trivial to estimate. This study presents a regression model to predict age using routine clinical tests like laboratory tests using the UK Biobank (UKBB) data. We run different machine learning regression models for this predictions task and compare their performance according to RMSE. The models were trained using data from 472,189 subjects aged 37-82 years old and 61 different laboratory tests results. Our chosen model was an XGboost model, which achieved an RMSE of 6.67 years. Subjects whose the model predicted to be younger than their actual age were found to be healthier as they had fewer diagnoses, fewer operations, and had a lower prevalence of specific diseases than age-matched controls. On the other hand, subjects predicted to be older than their chronological age had no significant differences in the number of diagnoses, number of operations, and specific diseases than age-matched controls.",
keywords = "BioBank, Biological age, Chronological age, Electronic Health Records, Laboratory tests, Machine Learning",
author = "Lin Peretz and Nadav Rappoport",
note = "Publisher Copyright: {\textcopyright} 2022 European Federation for Medical Informatics (EFMI) and IOS Press.; 32nd Medical Informatics Europe Conference, MIE 2022 ; Conference date: 27-05-2022 Through 30-05-2022",
year = "2022",
month = may,
day = "25",
doi = "10.3233/SHTI220442",
language = "English",
series = "Studies in Health Technology and Informatics",
publisher = "IOS Press BV",
pages = "224--228",
editor = "Brigitte Seroussi and Patrick Weber and Ferdinand Dhombres and Cyril Grouin and Jan-David Liebe and Jan-David Liebe and Jan-David Liebe and Sylvia Pelayo and Andrea Pinna and Bastien Rance and Bastien Rance and Lucia Sacchi and Adrien Ugon and Adrien Ugon and Arriel Benis and Parisis Gallos",
booktitle = "Challenges of Trustable AI and Added-Value on Health - Proceedings of MIE 2022",
address = "Netherlands",
}