TY - GEN
T1 - Differentiable Unsupervised Feature Selection based on a Gated Laplacian
AU - Lindenbaum, Ofir
AU - Shaham, Uri
AU - Peterfreund, Erez
AU - Svirsky, Jonathan
AU - Casey, Nicolas
AU - Kluger, Yuval
N1 - Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Scientific observations may consist of a large number of variables (features). Selecting a subset of meaningful features is often crucial for identifying patterns hidden in the ambient space. In this paper, we present a method for unsupervised feature selection, and we demonstrate its advantage in clustering, a common unsupervised task. We propose a differentiable loss that combines a graph Laplacian-based score that favors low-frequency features with a gating mechanism for removing nuisance features. Our method improves upon the naive graph Laplacian score by replacing it with a gated variant computed on a subset of low-frequency features. We identify this subset by learning the parameters of continuously relaxed Bernoulli variables, which gate the entire feature space. We mathematically motivate the proposed approach and demonstrate that it is crucial to compute the graph Laplacian on the gated inputs rather than on the full feature space in the high noise regime. Using several real-world examples, we demonstrate the efficacy and advantage of the proposed approach over leading baselines.
AB - Scientific observations may consist of a large number of variables (features). Selecting a subset of meaningful features is often crucial for identifying patterns hidden in the ambient space. In this paper, we present a method for unsupervised feature selection, and we demonstrate its advantage in clustering, a common unsupervised task. We propose a differentiable loss that combines a graph Laplacian-based score that favors low-frequency features with a gating mechanism for removing nuisance features. Our method improves upon the naive graph Laplacian score by replacing it with a gated variant computed on a subset of low-frequency features. We identify this subset by learning the parameters of continuously relaxed Bernoulli variables, which gate the entire feature space. We mathematically motivate the proposed approach and demonstrate that it is crucial to compute the graph Laplacian on the gated inputs rather than on the full feature space in the high noise regime. Using several real-world examples, we demonstrate the efficacy and advantage of the proposed approach over leading baselines.
UR - http://www.scopus.com/inward/record.url?scp=85124471357&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85124471357
T3 - Advances in Neural Information Processing Systems
SP - 1530
EP - 1542
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -