TY - GEN
T1 - Differentially Private Release and Learning of Threshold Functions
AU - Bun, Mark
AU - Nissim, Kobbi
AU - Stemmer, Uri
AU - Vadhan, Salil
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/12/11
Y1 - 2015/12/11
N2 - We prove new upper and lower bounds on the sample complexity of (∈, δ) differentially private algorithms for releasing approximate answers to threshold functions. A threshold function cx over a totally ordered domain X evaluates to cx(y) = 1 if y ≤ x, and evaluates to 0 otherwise. We give the first nontrivial lower bound for releasing thresholds with (∈, δ) differential privacy, showing that the task is impossible over an infinite domain X, and moreover requires sample complexity n ≥ (log∗ |X|), which grows with the size of the domain. Inspired by the techniques used to prove this lower bound, we give an algorithm for releasing thresholds with n ≤ 2(1+o(1)) log∗ |X| samples. This improves the previous best upper bound of 8(1+o(1)) log∗ |X| (Beimel et al., RANDOM'13). Our sample complexity upper and lower bounds also apply to the tasks of learning distributions with respect to Kolmogorov distance and of properly PAC learning thresholds with differential privacy. The lower bound gives the first separation between the sample complexity of properly learning a concept class with (∈, δ) differential privacy and learning without privacy. For properly learning thresholds in 'dimensions, this lower bound extends to n ≥ Ω (ℓ log∗ |X|). To obtain our results, we give reductions in both directions from releasing and properly learning thresholds and the simpler interior point problem. Given a database D of elements from X, the interior point problem asks for an element between the smallest and largest elements in D. We introduce new recursive constructions for bounding the sample complexity of the interior point problem, as well as further reductions and techniques for proving impossibility results for other basic problems in differential privacy.
AB - We prove new upper and lower bounds on the sample complexity of (∈, δ) differentially private algorithms for releasing approximate answers to threshold functions. A threshold function cx over a totally ordered domain X evaluates to cx(y) = 1 if y ≤ x, and evaluates to 0 otherwise. We give the first nontrivial lower bound for releasing thresholds with (∈, δ) differential privacy, showing that the task is impossible over an infinite domain X, and moreover requires sample complexity n ≥ (log∗ |X|), which grows with the size of the domain. Inspired by the techniques used to prove this lower bound, we give an algorithm for releasing thresholds with n ≤ 2(1+o(1)) log∗ |X| samples. This improves the previous best upper bound of 8(1+o(1)) log∗ |X| (Beimel et al., RANDOM'13). Our sample complexity upper and lower bounds also apply to the tasks of learning distributions with respect to Kolmogorov distance and of properly PAC learning thresholds with differential privacy. The lower bound gives the first separation between the sample complexity of properly learning a concept class with (∈, δ) differential privacy and learning without privacy. For properly learning thresholds in 'dimensions, this lower bound extends to n ≥ Ω (ℓ log∗ |X|). To obtain our results, we give reductions in both directions from releasing and properly learning thresholds and the simpler interior point problem. Given a database D of elements from X, the interior point problem asks for an element between the smallest and largest elements in D. We introduce new recursive constructions for bounding the sample complexity of the interior point problem, as well as further reductions and techniques for proving impossibility results for other basic problems in differential privacy.
KW - PAC learning
KW - differential privacy
KW - fingerprinting codes
KW - lower bounds
KW - threshold functions
UR - http://www.scopus.com/inward/record.url?scp=84952686682&partnerID=8YFLogxK
U2 - 10.1109/FOCS.2015.45
DO - 10.1109/FOCS.2015.45
M3 - Conference contribution
AN - SCOPUS:84952686682
T3 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
SP - 634
EP - 649
BT - Proceedings - 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015
PB - Institute of Electrical and Electronics Engineers
T2 - 56th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2015
Y2 - 17 October 2015 through 20 October 2015
ER -