TY - JOUR
T1 - Differentiating between long and short range disorder in infra-red spectra
T2 - On the meaning of "crystallinity" in silica
AU - Asscher, Yotam
AU - Dal Sasso, Gregorio
AU - Nodari, Luca
AU - Angelini, Ivana
AU - Boffa Ballaran, Tiziana
AU - Artioli, Gilberto
N1 - Publisher Copyright:
© 2017 the Owner Societies.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Local atomic disorder and crystallinity are structural properties that influence greatly the resulting chemical and mechanical properties of inorganic solids, and are used as indicators for different pathways of material formation. Here, these structural properties are assessed in the crystals of quartz based on particle-size-related scattering processes in transmission infra-red spectroscopy. Independent determinations of particle size distributions in the range 2-100 μm of a single crystal of quartz and defective quartz with highly anisotropic micro-crystallites show that particle sizes below the employed wavelength (approx 10 μm) exhibit asymmetric narrowing of absorption peak widths, due to scattering processes that depend on the intra-particle structural defects and long range crystallinity. In particular, we observe that the 1079 cm-1 peak could be used to assess crystallinity, because it shows an asymmetric peak shape shift toward a higher wavelength, depending on the crystallite size. We observe that the 694 cm-1 peak could be used to assess local atomic disorder as it does not show scattering and peak shape changes when absorption effects dominate, below 2 μm. We propose coupling particle size assessments with infra-red peak shape analysis as a method to characterize crystallinity and short range order for studying recrystallization in natural silica, as well as defectivity in many different types of silicas used for industrial and technological applications.
AB - Local atomic disorder and crystallinity are structural properties that influence greatly the resulting chemical and mechanical properties of inorganic solids, and are used as indicators for different pathways of material formation. Here, these structural properties are assessed in the crystals of quartz based on particle-size-related scattering processes in transmission infra-red spectroscopy. Independent determinations of particle size distributions in the range 2-100 μm of a single crystal of quartz and defective quartz with highly anisotropic micro-crystallites show that particle sizes below the employed wavelength (approx 10 μm) exhibit asymmetric narrowing of absorption peak widths, due to scattering processes that depend on the intra-particle structural defects and long range crystallinity. In particular, we observe that the 1079 cm-1 peak could be used to assess crystallinity, because it shows an asymmetric peak shape shift toward a higher wavelength, depending on the crystallite size. We observe that the 694 cm-1 peak could be used to assess local atomic disorder as it does not show scattering and peak shape changes when absorption effects dominate, below 2 μm. We propose coupling particle size assessments with infra-red peak shape analysis as a method to characterize crystallinity and short range order for studying recrystallization in natural silica, as well as defectivity in many different types of silicas used for industrial and technological applications.
UR - http://www.scopus.com/inward/record.url?scp=85027865263&partnerID=8YFLogxK
U2 - 10.1039/c7cp03446f
DO - 10.1039/c7cp03446f
M3 - Article
C2 - 28783192
AN - SCOPUS:85027865263
SN - 1463-9076
VL - 19
SP - 21783
EP - 21790
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 32
ER -