Abstract
Carbon-based materials generated from biowaste have recently attracted interest due to their exceptional surface and conductive properties. Cow dung derived porous carbon (CDPC) with a 3D structure and linked pores is synthesized in this study, making it an alternative electrode for supercapacitors (SC). Herein, we studied the diffusion and surface charge contribution and their relationship with the scan rate. Diffusion charge contribution is more prevalent at lower scan rates. Furthermore, a large fraction of surface charge contribution of 69.2 % at a high scan rate of 100 mV/s indicates rapid electrochemical kinetics and hence high-rate performance even at higher current densities. In addition, utilizing a 1 M H2SO4 electrolyte, the CDPC electrode has attained a high specific capacitance value of 210 F/g at 0.5 A/g. Furthermore, symmetrical solid-state SC device displayed high energy density of 36 Wh/kg at good power density of 800 W/kg along with remarkable cyclic stability of 92.6 % after 10,000 charge-discharge cycles. Hence, these findings demonstrate that investigating surface and diffusion charge contributions opens up new avenues for tuning the supercapacitor performance.
Original language | English |
---|---|
Article number | 109529 |
Journal | Diamond and Related Materials |
Volume | 130 |
DOIs | |
State | Published - 1 Dec 2022 |
Externally published | Yes |
Keywords
- Activated carbon
- Biowaste
- Cow dung
- Supercapacitor
- Surface charge contribution
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Mechanical Engineering
- General Physics and Astronomy
- Materials Chemistry
- Electrical and Electronic Engineering