Abstract
The boron isotopic composition of calcium carbonate skeletons is a promising proxy method for reconstructing paleo-ocean pH and atmospheric CO2 from the geological record. Although the boron isotope methodology has been used extensively over the past two decades to determine ancient ocean-pH, the actual value of the boron isotope fractionation factor (εB) between the two main dissolved boron species, 11B(OH)3 and 10B(OH)-4, has remained uncertain. Initially, εB values were theoretically computed from vibrational frequencies of boron species, resulting in a value of ~19‰. Later, spectrophotometric pH measurements on artificial seawater suggested a higher value of ~27‰. A few independent theoretical models also pointed to a higher εB value. Here we provide, for the first time, an independent empirical fractionation factor (εB=26.0±1.0‰25 °C), determined by direct measurements of B(OH)3 in seawater and other solutions. Boric acid was isolated by preferential passage through a reverse osmosis membrane under controlled pH conditions. We further demonstrate that applying the Pitzer ion-interaction approach, combined with ion-pairing calculations, results in a more accurate determination of species distribution in aquatic solutions of different chemical composition, relative to the traditional two-species boron-system approach. We show that using the revised approach reduces both the error in simulating ancient atmospheric CO2 (by up to 21%) and the overall uncertainty of applying boron isotopes for paleo-pH reconstruction. Combined, this revised methodology lays the foundation for a more accurate determination of ocean paleo-pH through time.
Original language | English |
---|---|
Pages (from-to) | 1-5 |
Number of pages | 5 |
Journal | Earth and Planetary Science Letters |
Volume | 414 |
DOIs | |
State | Published - 5 Mar 2015 |
Externally published | Yes |
Keywords
- Boron isotope fractionation
- Ocean acidity
- Ocean chemistry
- Paleo-pH
- Reverse osmosis
ASJC Scopus subject areas
- Geophysics
- Geochemistry and Petrology
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science