Direct prediction of gas adsorption via spatial atom interaction learning

Jiyu Cui, Fang Wu, Wen Zhang, Lifeng Yang, Jianbo Hu, Yin Fang, Peng Ye, Qiang Zhang, Xian Suo, Yiming Mo, Xili Cui, Huajun Chen, Huabin Xing

Research output: Contribution to journalArticlepeer-review

Abstract

Physisorption relying on crystalline porous materials offers prospective avenues for sustainable separation processes, greenhouse gas capture, and energy storage. However, the lack of end-to-end deep learning model for adsorption prediction confines the rapid and precise screen of crystalline porous materials. Here, we present DeepSorption, a spatial atom interaction learning network that realizes accurate, fast, and direct structure-adsorption prediction with only information of atomic coordinate and chemical element types. The breakthrough in prediction is attributed to the awareness of global structure and local spatial atom interactions endowed by the developed Matformer, which provides the intuitive visualization of atomic-level thinking and executing trajectory in crystalline porous materials prediction. Complete adsorption curves prediction could be performed using DeepSorption with a higher accuracy than Grand canonical Monte Carlo simulation and other machine learning models, a 20-35% decline in the mean absolute error compared to graph neural network CGCNN and machine learning models based on descriptors. Since the established direct associations between raw structure and target functions are based on the understanding of the fundamental chemistry of interatomic interactions, the deep learning network is rationally universal in predicting the different physicochemical properties of various crystalline materials.

Original languageEnglish
Article number7043
JournalNature Communications
Volume14
Issue number1
DOIs
StatePublished - 1 Dec 2023
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Direct prediction of gas adsorption via spatial atom interaction learning'. Together they form a unique fingerprint.

Cite this