Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities

Caio Graco-Roza, Sonja Aarnio, Nerea Abrego, Alicia T.R. Acosta, Janne Alahuhta, Jan Altman, Claudia Angiolini, Jukka Aroviita, Fabio Attorre, Lars Baastrup-Spohr, José J. Barrera-Alba, Jonathan Belmaker, Idoia Biurrun, Gianmaria Bonari, Helge Bruelheide, Sabina Burrascano, Marta Carboni, Pedro Cardoso, José C. Carvalho, Giuseppe CastaldelliMorten Christensen, Gilsineia Correa, Iwona Dembicz, Jürgen Dengler, Jiri Dolezal, Patricia Domingos, Tibor Erös, Carlos E.L. Ferreira, Goffredo Filibeck, Sergio R. Floeter, Alan M. Friedlander, Johanna Gammal, Anna Gavioli, Martin M. Gossner, Itai Granot, Riccardo Guarino, Camilla Gustafsson, Brian Hayden, Siwen He, Jacob Heilmann-Clausen, Jani Heino, John T. Hunter, Vera L.M. Huszar, Monika Janišová, Jenny Jyrkänkallio-Mikkola, Kimmo K. Kahilainen, Julia Kemppinen, Łukasz Kozub, Carla Kruk, Michel Kulbiki, Anna Kuzemko, Peter Christiaan le Roux, Aleksi Lehikoinen, Domênica Teixeira de Lima, Angel Lopez-Urrutia, Balázs A. Lukács, Miska Luoto, Stefano Mammola, Marcelo M. Marinho, Luciana S. Menezes, Marco Milardi, Marcela Miranda, Gleyci A.O. Moser, Joerg Mueller, Pekka Niittynen, Alf Norkko, Arkadiusz Nowak, Jean P. Ometto, Otso Ovaskainen, Gerhard E. Overbeck, Felipe S. Pacheco, Virpi Pajunen, Salza Palpurina, Félix Picazo, Juan A.C. Prieto, Iván F. Rodil, Francesco M. Sabatini, Shira Salingré, Michele De Sanctis, Angel M. Segura, Lucia H.S. da Silva, Zora D. Stevanovic, Grzegorz Swacha, Anette Teittinen, Kimmo T. Tolonen, Ioannis Tsiripidis, Leena Virta, Beixin Wang, Jianjun Wang, Wolfgang Weisser, Yuan Xu, Janne Soininen

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

Aim: Understanding the variation in community composition and species abundances (i.e., β-diversity) is at the heart of community ecology. A common approach to examine β-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.

Original languageEnglish
Pages (from-to)1399-1421
Number of pages23
JournalGlobal Ecology and Biogeography
Volume31
Issue number7
DOIs
StatePublished - 1 Jul 2022
Externally publishedYes

Keywords

  • biogeography
  • environmental gradient
  • spatial distance
  • trait
  • β-diversity

ASJC Scopus subject areas

  • Global and Planetary Change
  • Ecology, Evolution, Behavior and Systematics
  • Ecology

Fingerprint

Dive into the research topics of 'Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities'. Together they form a unique fingerprint.

Cite this