Abstract
In the auditory system, early neural stations such as brain stem are characterized by strict tonotopy, which is used to deconstruct sounds to their basic frequencies. But higher along the auditory hierarchy, as early as primary auditory cortex (A1), tonotopy starts breaking down at local circuits. Here, we studied the response properties of both excitatory and inhibitory neurons in the auditory cortex of anesthetized mice. We used in vivo two photon-targeted cell-attached recordings from identified parvalbumin-positive neurons (PVNs) and their excitatory pyramidal neighbors (PyrNs). We show that PyrNs are locally heterogeneous as characterized by diverse best frequencies, pairwise signal correlations, and response timing. In marked contrast, neighboring PVNs exhibited homogenous response properties in pairwise signal correlations and temporal responses. The distinct physiological microarchitecture of different cell types is maintained qualitatively in response to natural sounds. Excitatory heterogeneity and inhibitory homogeneity within the same circuit suggest different roles for each population in coding natural stimuli.
Original language | English |
---|---|
Pages (from-to) | 4242-4252 |
Number of pages | 11 |
Journal | Cerebral Cortex |
Volume | 26 |
Issue number | 11 |
DOIs | |
State | Published - 1 Oct 2016 |
Externally published | Yes |
Keywords
- brain maps
- natural sounds
- parvalbumin neurons (PV neurons)
- two-photon targeted patch (TPTP)
ASJC Scopus subject areas
- Cognitive Neuroscience
- Cellular and Molecular Neuroscience