Distributed exact shortest paths in sublinear time?

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

50 Scopus citations

Abstract

The distributed single-source shortest paths problem is one of the most fundamental and central problems in the message-passing distributed computing. Classical Bellman-Ford algorithm solves it in O(n) time, where n is the number of vertices in the input graph G. Peleg and Rubinovich, FOCS'99, showed a lower bound of Ω(D + √n) for this problem, where D is the hop-diameter of G. Whether or not this problem can be solved in o(n) time when D is relatively small is a major notorious open question. Despite intensive research that yielded near-optimal algorithms for the approximate variant of this problem, no progress was reported for the original problem. In this paper we answer this question in the affirmative. We devise an algorithm that requires O((nlogn)5/6) time, for D = O(√nlogn), and O(D1/3 · (nlog n)2/3) time, for larger D. This running time is sublinear in n in almost the entire range of parameters, specifically, for D = o(n/log2 n). We also generalize our result in two directions. One is when edges have bandwidth b ≥ 1, and the other is the s-sources shortest paths problem. For both problems, our algorithm provides bounds that improve upon the previous state-of-the-art in almost the entire range of parameters. In particular, we provide an all-pairs shortest paths algorithm that requires O(n5/3 · log2/3 n) time, even for b = 1, for all values of D. We also devise the first algorithm with non-trivial complexity guarantees for computing exact shortest paths in the multipass semi-streaming model of computation. From the technical viewpoint, our algorithm computes a hopset G″ of a skeleton graph G′ of G without first computing G′ itself. We then conduct a Bellman-Ford exploration in G′ U G″, while computing the required edges of G′ on the fly. As a result, our algorithm computes exactly those edges of G′ that it really needs, rather than computing approximately the entire G′.

Original languageEnglish
Title of host publicationSTOC 2017 - Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
EditorsPierre McKenzie, Valerie King, Hamed Hatami
PublisherAssociation for Computing Machinery
Pages757-770
Number of pages14
ISBN (Electronic)9781450345286
DOIs
StatePublished - 19 Jun 2017
Event49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017 - Montreal, Canada
Duration: 19 Jun 201723 Jun 2017

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
VolumePart F128415
ISSN (Print)0737-8017

Conference

Conference49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017
Country/TerritoryCanada
CityMontreal
Period19/06/1723/06/17

Keywords

  • Distributed algorithms
  • Exact shortest paths

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Distributed exact shortest paths in sublinear time?'. Together they form a unique fingerprint.

Cite this