Dormancy in embryos: Insight from hydrated encysted embryos of an aquatic invertebrate

Tamar Ziv, Vered Chalifa-Caspi, Nadav Denekamp, Inbar Plaschkes, Sylwia Kierszniowska, Idit Blais, Arie Admon, Esther Lubzens

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Numerous aquatic invertebrates remain dormant for decades in a hydrated state as encysted embryos. In search for functional pathways associated with this form of dormancy, we used label-free quantitative proteomics to compare the proteomes of hydrated encysted dormant embryos (resting eggs; RE) with nondormant embryos (amictic eggs; AM) of the rotifer Brachionus plicatilis. A total of 2631 proteins were identified in rotifer eggs. About 62% proteins showed higher abundance in AM relative to RE (Fold Change>3; p = 0.05). Proteins belonging to numerous putative functional pathways showed dramatic changes during dormancy. Most striking were changes in the mitochondria indicating an impeded metabolism. A comparison between the abundance of proteins and their corresponding transcript levels, revealed higher concordance for RE than for AM. Surprisingly, numerous highly abundant dormancy related proteins show corresponding high mRNA levels in metabolically inactive RE. As these mRNAs and proteins degrade at the time of exit from dormancy they may serve as a source of nucleotides and amino acids during the exit from dormancy. Because proteome analyses point to a similarity in functional pathways of hydrated RE and desiccated life forms, REs were dried. Similar hatching and reproductive rates were found for wet and dried REs, suggesting analogous pathways for long-term survival in wet or dry forms. Analysis by KEGG pathways revealed a few general strategies for dormancy, proposing an explanation for the low transcriptional similarity among dormancies across species, despite the resemblance in physiological phenotypes.

Original languageEnglish
Pages (from-to)1746-1769
Number of pages24
JournalMolecular and Cellular Proteomics
Volume16
Issue number10
DOIs
StatePublished - 1 Oct 2017

Fingerprint

Dive into the research topics of 'Dormancy in embryos: Insight from hydrated encysted embryos of an aquatic invertebrate'. Together they form a unique fingerprint.

Cite this