Download and Access Trade-offs in Lagrange Coded Computing

Netanel Raviv, Qian Yu, Jehoshua Bruck, Salman Avestimehr

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Lagrange Coded Computing (LCC) is a recently proposed technique for resilient, secure, and private computation of arbitrary polynomials in distributed environments. By mapping such computations to composition of polynomials, LCC allows the master node to complete the computation by accessing a minimal number of workers and downloading all of their content, thus providing resiliency to the remaining stragglers. However, in the most common case in which the number of stragglers is less than in the worst case scenario, much of the computational power of the system remains unexploited. To amend this issue, in this paper we expand LCC by studying a fundamental trade-off between download and access, and present two contributions. In the first contribution, it is shown that without any modification to the encoding process, the master can decode the computations by accessing a larger number of nodes, however downloading less information from each node in comparison with LCC (i.e., trading access for download). This scheme relies on decoding a particular polynomial in the ideal that is generated by the polynomials of interest, a technique we call Ideal Decoding. This new scheme also improves LCC in the sense that for systems with adversaries, the overall downloaded bandwidth is smaller than in LCC. In the second contribution we study a real-time model of this trade-off, in which the data from the workers is downloaded sequentially. By clustering nodes of similar delays and encoding the function with Universally Decodable Matrices, the master can decode once sufficient data is downloaded from every cluster, regardless of the internal delays within that cluster. This allows the master to utilize the partial work that is done by stragglers, rather than to ignore it, a feature that most past works in coded computing are lacking.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers
Pages1787-1791
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - 1 Jul 2019
Externally publishedYes
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 7 Jul 201912 Jul 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/07/1912/07/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Download and Access Trade-offs in Lagrange Coded Computing'. Together they form a unique fingerprint.

Cite this