Abstract
We studied experimentally the behavior of a single cold water droplet that falls onto a hot horizontal flat solid surface in the film boiling region. We found that when the droplet hits the surface (for the first time), three different regimes may occur. These regimes depend on the ratio of fluid's inertia and its surface tension (the Weber number, indicated as We) and on the surface temperature. For relatively low We numbers or surface temperatures, the droplet completely bounces back from the surface and no breakup occurs. For intermediate We numbers or surface temperatures, the spreading stage is faster and the droplet undergoes spreading and partial recession before it breaks up into bouncing small secondary droplets that leap inward and successively coalesce above the surface to form a single droplet once again. For high We numbers or surface temperatures, the spreading velocity is higher, the contact area with the surface is greater, and the liquid film thickness is smaller. Thus, during the expansion of the spreading stage, the droplet breaks up into bouncing small secondary droplets that uninterruptedly leap outward and travel independently. We also present the limiting conditions differentiating between the different behaviors found. This work shows droplet film boiling behaviors that are essentially different than droplet levitation on top of a thin vapor layer, as mainly assumed in theoretical models. We also observed that when a droplet hits the surface for the second, consecutive time (and on), the droplet behaves somewhat differently due to its preheating, very low impact velocity, different shape, spin, orientation, and the surface temperature. At the second impact on the surface (and on), the droplet can continue its bounce in a unique and different manner than in the first impact or it can explode violently to small secondary droplets. Both are unique and differentiating mainly by the droplet's shape and orientation at the exact moment of impact on the surface. Additionally, a rare and unique view of droplet-droplet collision during film boiling is presented. This type of collision behaves in a different way than other droplet-droplet collisions and compared to the adiabatic case of droplet-droplet collision on a nonheated surface. The behaviors found, presented, and discussed in this study change our view of the droplet-surface and droplet-droplet interactions that occur in spray cooling in the film boiling region.
Original language | English |
---|---|
Article number | 051503 |
Journal | Journal of Heat Transfer |
Volume | 137 |
Issue number | 5 |
DOIs | |
State | Published - 1 May 2015 |
Keywords
- Droplet bounce
- Droplet breakup
- Droplet film boiling
- Droplet impact
- Droplet-droplet collision
- Heat transfer
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering