TY - GEN
T1 - DyeTC
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
AU - Chen, Haipeng
AU - An, Bo
AU - Sharon, Guni
AU - Hanna, Josiah P.
AU - Stone, Peter
AU - Miao, Chunyan
AU - Soh, Yeng Chai
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - To alleviate traffic congestion in urban areas, electronic toll collection (ETC) systems are deployed all over the world. Despite the merits, tolls are usually pre-determined and fixed from day to day, which fail to consider traffic dynamics and thus have limited regulation effect when traffic conditions are abnormal. In this paper, we propose a novel dynamic ETC (DyETC) scheme which adjusts tolls to traffic conditions in realtime. The DyETC problem is formulated as a Markov decision process (MDP), the solution of which is very challenging due to its 1) multi-dimensional state space, 2) multidimensional, continuous and bounded action space, and 3) time-dependent state and action values. Due to the complexity of the formulated MDP, existing methods cannot be applied to our problem. Therefore, we develop a novel algorithm, PG-β, which makes three improvements to traditional policy gradient method by proposing 1) time-dependent value and policy functions, 2) Beta distribution policy function and 3) state abstraction. Experimental results show that, compared with existing ETC schemes, DyETC increases traffic volume by around 8%, and reduces travel time by around 14.6% during rush hour. Considering the total traffic volume in a traffic network, this contributes to a substantial increase to social welfare.
AB - To alleviate traffic congestion in urban areas, electronic toll collection (ETC) systems are deployed all over the world. Despite the merits, tolls are usually pre-determined and fixed from day to day, which fail to consider traffic dynamics and thus have limited regulation effect when traffic conditions are abnormal. In this paper, we propose a novel dynamic ETC (DyETC) scheme which adjusts tolls to traffic conditions in realtime. The DyETC problem is formulated as a Markov decision process (MDP), the solution of which is very challenging due to its 1) multi-dimensional state space, 2) multidimensional, continuous and bounded action space, and 3) time-dependent state and action values. Due to the complexity of the formulated MDP, existing methods cannot be applied to our problem. Therefore, we develop a novel algorithm, PG-β, which makes three improvements to traditional policy gradient method by proposing 1) time-dependent value and policy functions, 2) Beta distribution policy function and 3) state abstraction. Experimental results show that, compared with existing ETC schemes, DyETC increases traffic volume by around 8%, and reduces travel time by around 14.6% during rush hour. Considering the total traffic volume in a traffic network, this contributes to a substantial increase to social welfare.
UR - http://www.scopus.com/inward/record.url?scp=85060432842&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85060432842
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 757
EP - 765
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI press
Y2 - 2 February 2018 through 7 February 2018
ER -