Abstract
Massive multiple-input-multiple-output (MIMO) communications are the focus of considerable interest in recent years. While the theoretical gains of massive MIMO have been established, implementing MIMO systems with large-scale antenna arrays in practice is challenging. Among the practical challenges associated with massive MIMO systems are increased cost, power consumption, and physical size. In this paper, we study the implementation of massive MIMO antenna arrays using dynamic metasurface antennas (DMAs), an emerging technology which inherently handles the aforementioned challenges. Specifically, DMAs realize large-scale planar antenna arrays and can adaptively incorporate signal processing methods such as compression and analog combining in the physical antenna structure, thus reducing the cost and power consumption. First, we propose a mathematical model for massive MIMO systems with DMAs and discuss their constraints compared to ideal antenna arrays. Then, we characterize the fundamental limits of uplink communications with the resulting systems and propose two algorithms for designing practical DMAs for approaching these limits. Our numerical results indicate that the proposed approaches result in practical massive MIMO systems whose performance is comparable to that achievable with ideal antenna arrays.
Original language | English |
---|---|
Article number | 8756024 |
Pages (from-to) | 6829-6843 |
Number of pages | 15 |
Journal | IEEE Transactions on Communications |
Volume | 67 |
Issue number | 10 |
DOIs | |
State | Published - 1 Oct 2019 |
Externally published | Yes |
Keywords
- Massive MIMO
- antenna design
- metasurfaces
ASJC Scopus subject areas
- Electrical and Electronic Engineering