Abstract
The propagation of stress waves through a chain of discs has been studied experimentally in Part I (Glam et al. [1]) and is completed here with numerical investigation using the standard package ABAQUS. A fair agreement is found between experimental findings and their simulations. Based on this agreement, parametric study of wave propagation through disc-chains was conducted. Specifically, effects associated with changes in the disc diameter, material density, stiffness/rigidity and the number of discs in the chain on the stressed chain have been studied. It was found that the propagation velocity of the evolved waves increases with improving contacts between the chain's discs by exposing the chain to a static load before its dynamic loading. The wave- propagation velocity decreases with increase in the discs material density and it increases when its diameter increases. In case of a chain composed of small diameter discs and/or small material density, the transmitted stress wave is first strengthened and only at discs further down the chain it starts decaying. When checking the influence of the dynamic-loading duration it was found that long dynamic-load duration dissolves quickly into short pulses. It was also found that there is a 'characteristic' wave for a given chain. This wave propagates with minimal dispersion. Dynamic loads having shorter time duration than the 'characteristic' one experiences significant attenuation.
Original language | English |
---|---|
Pages (from-to) | 15-27 |
Number of pages | 13 |
Journal | Shock Waves |
Volume | 17 |
Issue number | 1-2 |
DOIs | |
State | Published - 1 Aug 2007 |
Keywords
- Numerical simulation
- Propagation of stress waves
- Shock wave impact
ASJC Scopus subject areas
- Mechanical Engineering
- General Physics and Astronomy