Dynamics on the infinite staircase

W. Patrick Hooper, Pascal Hubert, Barak Weiss

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


For the 'infinite staircase' square tiled surface we classify the Radon invariant measures for the straight line flow, obtaining an analogue of the celebrated Veech dichotomy for an infinite genus lattice surface. The ergodic Radon measures arise from Lebesgue measure on a one parameter family of deformations of the surface. The staircase is a ℤ-cover of the torus, reducing the question to the well-studied cylinder map.

Original languageEnglish
Pages (from-to)4341-4347
Number of pages7
JournalDiscrete and Continuous Dynamical Systems
Issue number9
StatePublished - 1 Sep 2013


  • Dynamics
  • Ergodicity
  • Infinite lattice surface
  • Infinite staircase
  • Maharam measure

ASJC Scopus subject areas

  • Analysis
  • Discrete Mathematics and Combinatorics
  • Applied Mathematics


Dive into the research topics of 'Dynamics on the infinite staircase'. Together they form a unique fingerprint.

Cite this