TY - CONF
T1 - Early Prediction of Student Performance in a Health Data Science MOOC.
AU - Rohani, Narjes
AU - Gal, Kobi
AU - Gallagher, Michael
AU - Manataki, Areti
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2023/7
Y1 - 2023/7
N2 - Massive Open Online Courses (MOOCs) make high-quality learning accessible to students from all over the world. On the other hand, they are known to exhibit low student performance and high dropout rates. Early prediction of student performance in MOOCs can help teachers intervene in time in order to improve learners' future performance. This is particularly important in healthcare courses, given the acute shortages of healthcare staff and the urgent need to train data-literate experts in the healthcare field. In this paper, we analysed a health data science MOOC taken by over 3,000 students. We developed a novel three-step pipeline to predict student performance in the early stages of the course. In the first step, we inferred the transitions between students' low-level actions from their clickstream interactions. In the second step, the transitions were fed into Artificial Neural Network (ANN) that predicted student performance. In the final step, we used two explanation methods to interpret the ANN result. Using this approach, we were able to predict learners' final performance in the course with an AUC ranging from 83\% to 91\%. We found that students who interacted predominately with lab, project, and discussion materials outperformed students who interacted predominately with lectures and quizzes. We used the DiCE counterfactual method to automatically suggest simple changes to the learning behaviour of low- and moderate-performance students in the course that could potentially improve their performance. Our method can be used by instructors to help identify and support struggling students during the course.
AB - Massive Open Online Courses (MOOCs) make high-quality learning accessible to students from all over the world. On the other hand, they are known to exhibit low student performance and high dropout rates. Early prediction of student performance in MOOCs can help teachers intervene in time in order to improve learners' future performance. This is particularly important in healthcare courses, given the acute shortages of healthcare staff and the urgent need to train data-literate experts in the healthcare field. In this paper, we analysed a health data science MOOC taken by over 3,000 students. We developed a novel three-step pipeline to predict student performance in the early stages of the course. In the first step, we inferred the transitions between students' low-level actions from their clickstream interactions. In the second step, the transitions were fed into Artificial Neural Network (ANN) that predicted student performance. In the final step, we used two explanation methods to interpret the ANN result. Using this approach, we were able to predict learners' final performance in the course with an AUC ranging from 83\% to 91\%. We found that students who interacted predominately with lab, project, and discussion materials outperformed students who interacted predominately with lectures and quizzes. We used the DiCE counterfactual method to automatically suggest simple changes to the learning behaviour of low- and moderate-performance students in the course that could potentially improve their performance. Our method can be used by instructors to help identify and support struggling students during the course.
U2 - 10.5281/zenodo.8115720
DO - 10.5281/zenodo.8115720
M3 - Paper
T2 - Proceedings of the 16th International Conference on Educational Data Mining
Y2 - 11 July 2023 through 14 July 2023
ER -