TY - JOUR
T1 - Earthquake-induced soft sediment deformation (SSD) structures from the Bilara limestone formation, Marwar basin, India
AU - Chakraborty, Partha Pratim
AU - Sharma, Rajesh
AU - Kumar, Pramod
N1 - Publisher Copyright:
© 2019, Indian Academy of Sciences.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - The Neoproterozoic Bilara limestone Formation of the Marwar Group, Rajasthan, India exposes metres-thick layers of soft sediment deformation (SSD) structures at different stratigraphic levels which could be traced over hundreds of metres on the outcrop scale. The SSD structures include disharmonic folds, low-angle thrusts, distorted laminae, fluidisation pipes, slump and load structures, homogeneities, diapirs, etc. Whereas SSD structures suggesting tensional stress, viz., intrastriatal graben, fluidisation, slump, etc. dominate in the lower part of the Bilara succession, features implicating compression, viz., folds, low-angle thrust are prevalent in the uppermost part. Since SSD structures are mostly confined within the algal laminites, we interpret that enhanced micritic fluid pressure below early cemented algal carbonate played a major role in laminae deformation. Depending on the degree of lithification and pore-water pressure, deformation features formed either plastically or led to diapiric injection at enhanced pore water pressure. Separated by near-horizontal underformed strata, the SSD layers, traceable over hundreds of metres, are interpreted as products of seismic shacking. Considering the time frame of the Marwar basin, i.e., the Precambrian–Cambrian transition, the SSD horizons present within the Bilara succession may hold the potential for the correlation with SSD structures reported from the time-correlative stratigraphic successions present in erstwhile adjoining tectonic terrains, e.g., China, Siberia, etc.
AB - The Neoproterozoic Bilara limestone Formation of the Marwar Group, Rajasthan, India exposes metres-thick layers of soft sediment deformation (SSD) structures at different stratigraphic levels which could be traced over hundreds of metres on the outcrop scale. The SSD structures include disharmonic folds, low-angle thrusts, distorted laminae, fluidisation pipes, slump and load structures, homogeneities, diapirs, etc. Whereas SSD structures suggesting tensional stress, viz., intrastriatal graben, fluidisation, slump, etc. dominate in the lower part of the Bilara succession, features implicating compression, viz., folds, low-angle thrust are prevalent in the uppermost part. Since SSD structures are mostly confined within the algal laminites, we interpret that enhanced micritic fluid pressure below early cemented algal carbonate played a major role in laminae deformation. Depending on the degree of lithification and pore-water pressure, deformation features formed either plastically or led to diapiric injection at enhanced pore water pressure. Separated by near-horizontal underformed strata, the SSD layers, traceable over hundreds of metres, are interpreted as products of seismic shacking. Considering the time frame of the Marwar basin, i.e., the Precambrian–Cambrian transition, the SSD horizons present within the Bilara succession may hold the potential for the correlation with SSD structures reported from the time-correlative stratigraphic successions present in erstwhile adjoining tectonic terrains, e.g., China, Siberia, etc.
KW - Bilara limestone
KW - Neoproterozoic
KW - micritic fluid pressure
KW - seismite
KW - soft sediment deformation
UR - http://www.scopus.com/inward/record.url?scp=85067491773&partnerID=8YFLogxK
U2 - 10.1007/s12040-019-1182-x
DO - 10.1007/s12040-019-1182-x
M3 - Article
AN - SCOPUS:85067491773
SN - 2347-4327
VL - 128
JO - Journal of Earth System Science
JF - Journal of Earth System Science
IS - 6
M1 - 162
ER -