Edge stress intensity functions in polyhedral domains and their extraction by a quasidual function method

Zohar Yosibash, Netta Omer, Martin Costabel, Monique Dauge

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

The solution to elastic isotropic problems in three-dimensional (3-D) polyhedral domains in the vicinity of an edge is provided in an explicit form. It involves a family of eigen-functions with their shadows, and the associated edge stress intensity functions (ESIFs), which are functions along the edges. Utilizing the explicit structure of the solution in the vicinity of the edge we use the quasidual function method, recently presented in [Omer et al. (2004). International Journal of Fracture 129:97-130] for scalar elliptic problems a nd in [Costabel et al. (2004). SIAM Journal of Mathematical Analysis 35(5), 1177-1202] in a general theoretical framework, for the extraction of ESIFs. This method provides a polynomial approximation of the ESIF along the edge whose order is adaptively increased so to approximate the exact ESIF. It is implemented as a post-solution operation in conjunction with the p-version finite element method. Numerical examples are provided in which we extract ESIFs associated with traction free or homogeneous Dirichlet boundary conditions in 3-D cracked domains or 3-D V-Notched domains. These demonstrate the efficiency, robustness and high accuracy of the proposed quasi-dual function method.

Original languageEnglish
Pages (from-to)37-73
Number of pages37
JournalInternational Journal of Fracture
Volume136
Issue number1-4
DOIs
StatePublished - 1 Jan 2005

Keywords

  • Edge stress intensity functions
  • High order finite elements
  • J-integral

ASJC Scopus subject areas

  • Computational Mechanics
  • Modeling and Simulation
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Edge stress intensity functions in polyhedral domains and their extraction by a quasidual function method'. Together they form a unique fingerprint.

Cite this